بررسی عددی خواص رئولوژیکی یک نانو سیال هیبریدی از طریق الگوریتم MOPSO با استفاده از روش سطح پاسخ (RSM) و بررسی بهینه‌سازی عدد ناسلت و ضریب اصطحکاک آن

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشگاه جامع امام حسین (ع)

2 دانشگاه امیرکبیر

چکیده

در مقاله حاضر به بررسی عدد ناسلت و ضریب اصطحکاک نانوسیال هیبریدی با کسر حجمی بین (0 تا 0.1%) در اعداد رینولدز تقریبی(140 تا 3000) به صورت عددی پرداخته شده است. به منظور بیشینه عدد ناسلت و کمینه ضریب اصطحکاک با تغییر در دما و کسر حجمی نانوذره از الگوریتم MOPSO استفاده شده است. برای بدست آوردن مقادیر عدد ناسلت و ضریب اصطحکاک بر حسب دما و کسر حجمی نانوذره از روش سطح پاسخ (RSM) از داده های تجربی استفاده شده است. هدف از تحقیق بهینه‌سازی نانو سیال برای کاهش ضریب اصطحکاک و افزایش عدد ناسلت است. این بهینه‌سازی با تعیین توابع هدف و داده‌های تجربی ضریب اصطحکاک و عدد ناسلت نانو سیال و بکارگیری روش سطح پاسخ انجام شد. نتایج نشان می دهد که با افزایش عدد‌ رینولدز عدد ناسلت افزایش و ضریب اصطکاک کاهش می‌یابد. به منظور ارزیابی توابع هدف در بهینه‌سازی، روش سطح پاسخ (RSM) به الگوریتم بهینه‌سازی متصل شده است. در انتها جبهه پارتو (pareto-front) و نقاط بهینه متناظر با آن ارائه شده است.

کلیدواژه‌ها

موضوعات


[1] Zadeh, P Mohammad, Sokhansefat, T, Kasaeian, AB, Kowsary, F, and Akbarzadeh, A. Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy, 82:857–864, 2015.

[2] Wang,Xinwei,Xu,Xianfan,andS.Choi,StephenU. Thermal conductivity of nanoparticle-fluid mixture. Journal of thermophysics and heat transfer, 13(4):474–480, 1999.

[3] Esmaeeli, A. D., Mahdavi, S. R., Pouladian, M., Monfared, A. S., and Bagheri, S. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field linac-mr unit. Medical Physics, 41(1):011709, 2014.

[4] Mohammadi, Majid, Dadvar, Mitra, and Dabir, Bahram. Tio2/sio2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, andoptimization. Journal of Molecular Liquids, 238:326–340, 2017.

[5] Xie,Hua-qing,Wang,Jin-chang,Xi,Tong-geng,and Liu, Yan. Thermal conductivity of suspensions containingnanosizedsicparticles. InternationalJournal of Thermophysics, 23(2):571–580, 2002.

 [6] Zhou, Jiandong, Hatami, M, Song, Dongxing, and Jing, Dengwei. Design of microchannel heat sink withwavychannelanditstime-efficientoptimization with combined rsm and fvm methods. International Journal of Heat and Mass Transfer, 103:715–724, 2016.

[7] Zhang, Chun-ping, Lian, Yi-fu, Yu, Xiang-fei, Liu, Wei, Teng, Jyh-tong, Xu, Ting-ting, Hsu, ChengHsing, Chang, Yaw-Jen, and Greif, Ralph. Numerical and experimental studies on laminar hydrodynamic and thermal characteristics in fractal-like microchannel networks. part a: Comparisons of two numerical analysis methods on friction factor and nusselt number. International Journal of Heat and Mass Transfer, 66:930–938, 2013.

 [8] Akbarinia, A. Impactsofnanofluidflowonskinfriction factor and nusselt number in curved tubes with constant mass flow. International Journal of Heat and Fluid Flow, 29(1):229–241, 2008.

 [9] Zhao, Ningbo and Li, Zhiming. Experiment and artificial neural network prediction of thermal conductivityandviscosityforalumina-waternanofluids. Materials, 10(5):552, 2017.

[10] Shirvan, Kamel Milani, Mamourian, Mojtaba, Mirzakhanlari, Soroush, Öztop, Hakan F, and AbuHamdeh, Nidal. Numerical simulation and sensitivity analysis of effective parameters on heat transfer and homogeneity of al2o3 nanofluid in a channel using dpm and rsm. Advanced Powder Technology, 27(5):1980–1991, 2016.

 [11] Iranmanesh, Soudeh, Mehrali, Mohammad, Sadeghinezhad, Emad, Ang, Bee Chin, Ong, Hwai Chyuan, and Esmaeilzadeh, Alireza. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental– statisticalapproachusingrespondsurfacemethodology method. International Communications in Heat and Mass Transfer, 79:74–80, 2016.

 [12] Esfe, Mohammad Hemmat, Hajmohammad, MohammadHadi,Razi,Peyman,Ahangar,Mohammad Reza Hassani, and Arani, Ali Akbar Abbasian. The optimizationofviscosityandthermalconductivityin hybridnanofluidspreparedwithmagneticnanocomposite of nanodiamond cobalt-oxide (nd-co3o4) using nsga-ii and rsm. International Communications in Heat and Mass Transfer, 79:128–134, 2016.

[13] Huang, Shang-Ming, Kuo, Chia-Hung, Chen, ChunAn, Liu, Yung-Chuan, and Shieh, Chwen-Jen. Rsm and ann modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrasonics sonochemistry, 36:112–122, 2017.

 [14] Ohale, PE, Uzoh, Chigozie F, and Onukwuli, Okechukwu Dominic. Optimal factor evaluation for the dissolution of alumina from azaraegbelu clay in acid solution using rsm and ann comparative analysis. south african journal of chemical engineering, 24:43–54, 2017.

 [15] Sabour, Mohammad Reza and Amiri, Allahyar. Comparative study of ann and rsm for simultaneous optimization of multiple targets in fenton treatment of landfill leachate. Waste Management, 65:54–62, 2017.

[16] Patel, Hrishikesh E, Das, Sarit K, Sundararajan, T, Sreekumaran Nair, A, George, Beena, and Pradeep, T. Thermal conductivities of naked and monolayerprotected metal nanoparticle based nanofluids: Manifestationofanomalousenhancementandchemical effects. Applied Physics Letters, 83(14):2931– 2933, 2003.

 [17] Shirvan, Kamel Milani, Mamourian, Mojtaba, Mirzakhanlari, Soroush, and Ellahi, Rahmat. Numerical investigation of heat exchanger effectiveness inadoublepipeheatexchangerfilledwithnanofluid: a sensitivity analysis by response surface methodology. Powder Technology, 313:99–111, 2017.

[18] Kumar, Anil, Kumar, Raj, Maithani, Rajesh, Chauhan,Ranchan,Sethi,Muneesh,Kumari,Anita, Kumar, Sushil, and Kumar, Sunil. Correlation development for nusselt number and friction factor of amultipletypev-patterndimpledobstaclessolarair passage. Renewable Energy, 109:461–479, 2017.

 [19] Lin, TY and Tseng, CH. Optimum design for artificial neural networks: an example in a bicycle derailleur system. Engineering Applications of Artificial Intelligence, 13(1):3–14, 2000.

 [20] Hatami, M. Nanoparticles migration around the heated cylinder during the rsm optimization of a wavy-wall enclosure. Advanced Powder Technology, 28(3):890–899, 2017.

[21] Hatami, M, Ganji, MJZ, Sohrabiasl, I, and Jing, D. Optimizationofthefuelrod’sarrangementcooledby turbulent nanofluids flow in pressurized water reactor(pwr). ChineseJournalofChemicalEngineering, 25(6):722–731, 2017.

[22] Gorji, Tahereh B and Ranjbar, AA. Thermal and exergy optimization of a nanofluid-based direct absorptionsolarcollector. Renewable Energy, 106:274– 287, 2017.