مطالعه و بررسی مکانیزم فرآیند کوبش اولتراسونیک و تأثیر آن بر خواص مکانیکی و متالورژیکی قطعات فلزی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

فرآیند کوبش اولتراسونیک، روشی جدید برای بهبود خواص فلز جوش و افزایش عمر خستگی سازه‌ها می‌باشد. فرآیند کوبش اولتراسونیک با اِعمال ضربات مکانیکی ناشی از ارتعاشات فراصوت، باعث بهبود خواص مکانیکی و متالورژیکی سطوح قطعات فلزی می‌شود. فرکانس ارتعاش برای فرآیند کوبش اولتراسونیک در بازه 20 الی 40 کیلوهرتز قرار دارد. تأثیر عمده این فرآیند، افزایش استحکام خستگی مقاطع جوش داده شده تحت بارگذاری دینامیکی می‌باشد. کوبش اولتراسونیک با اِعمال تنش‌های پسماند فشاری و با حذف و کاهش تنش‌های پسماند کششی، باعث ایجاد تغییر شکل پلاستیک شده و با بستن دهانه ترک‌های سطحی موجود در سطوح فلزات باعث افزایش طول عمر قطعات خواهد شد. بنابراین هر نیروی خارجی که سبب تخریب قطعه می‌شود، ابتدا باید بر تنش‌های پسماند فشاری غلبه کند. همین موضوع سبب طولانی‌تر شدن عمر خستگی قطعه مورد نظر خواهد شد. در این مقاله، مکانیزم فرآیند کوبش اولتراسونیک و نقش آن در بهبود خواص مکانیکی و متالورژیکی مواد، مورد مطالعه و بررسی قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


[1] E. Statnikov, Guide for application of ultrasonic impact treatment improving fatigue life of welded structures, Life of Welded Structures, IIW, Doc, 1999.

[2] E. Statnikov, Physics and mechanism of ultrasonic impact treatment, International Institute of Welding, IIW Document XIII-2004-04, 2004.

 [3] M.P. Nascimento, R.C. Souza, W.L. Pigatin, H.J.C. Voorwald, Effects of surface treatments on the fatigue strength of AISI 4340 aeronautical steel, Int. J. Fatigue, Vol. 23, pp. 607–618, 2003.

[4] K. Kirkhope, R. Bell, L. Caron, R. Basu, K.-T. Ma, Weld detail fatigue life improvement techniques. Part 2: application to ship structures, Mar. Struct, Vol. 12, No. 7, pp. 477–496, 1999.

[5] T. Deguchi, M. Mouri, J. Hara, D. Kano, T. Shimoda, F. Inamura,T.Fukuoka,K.Koshio,Fatiguestrengthimprovement for ship structures by Ultrasonic Peening, J. Mar. Sci. Technol, Vol. 17, No. 3, pp. 360–369, 2012.

 [6] L.L. Martinez, Z. Barsoum, A. Paradowska, fatigue life extension of offshore installations, 31st International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, pp. 9–20, 2012.

 [7] Y. Kudryavtsev, J. Kleiman, Application of Ultrasonic Peening for Fatigue Life Improvement of Automotive Welded Wheels, International Institute of Welding, IIW Document XIII-2075-05, 2005. [8] S. Maddox, M.J. Doré, S. Smith, A Case Study Of The Use Of Ultrasonic Peening For Upgrading A Welded Steel Structure, Weld World, Vol. 55, No. 9–10, pp. 56–67, 2011.

 [9] M. Malaki, H. Ding, A review of ultrasonic peening treatment, Mater. Des., Vol. 87, pp. 1072–1086, 2015.

[10] X. Zhao, M. Wang, Z. Zhang, and Y. Liu. The Effect of Ultrasonic Peening Treatment on Fatigue Performance of Welded Joints, Materials, Vol. 471, 2016.

[11] YS. Pyoun, H.S. Kim, K.G.Son, G.H.Song, M.K.Kim, J.H.Kang, B.U.Choi, J.Park, I.H.Cho, C.S.Kim, J.H.Park, J.Kinney, Development of D2 Tool Steel Trimming Knives withNanoscaleMicrostructure,ProceedingsoftheAISTech, Vol. 2, pp. 465-468, 2005.

[12] A. Amanov, O. Penkov, Y. S. Pyun, D. E. Kim, Effects of ultrasonic nanocrystalline surface modification on the tribological properties of AZ91D magnesium alloy, Tribology International, Vol. 54, pp. 106–113, 2012.

 [13] A. Abdullah, M. Malaki , A. Eskandari, Strength enhancementoftheweldedstructuresbyultrasonicpeening, Mater. Des., Vol. 38, pp. 7-18, 2012.

 [14] Y. Kudryavtsev, J. Kleiman, L. Lobanov, V. Knysh, G. Prokopenko. Fatigue Life Improvement of Welded Elements by Ultrasonic Peening, International Institute of Welding, 2010.

 [15] P. Haagensen, E. Statnikov, L. Lopez-Martinez, Introductory fatigue tests on welded joints in high strength steel and aluminium improved by various methods including ultrasonic impact treatment (UIT), International Institute of Welding, IIW Doc. 13, pp. 1748–1798, 1998.

[16] S.Roy, J.W.Fisher, B.T.Yen, Fatigueresistanceofwelded detailsenhancedbyultrasonicimpacttreatment(UIT),Int. J. Fatigue, Vol. 25, No. 9, pp. 1239–1247, 2003.

[17] V.Trufiakov, E.Statnikov, P.Mikheev, A.Kuzmenko, The EfficiencyofUltrasonicImpactTreatmentforImprovingthe Fatigue Strength of Welded Joints, International Institute of Welding, IIW Document, 13, pp. 1745–1798, 1998.

 [18] M. Castillo-Morales, A. Salas-Zamarripa, The effects of UIT in the fatigue life of Al 2024-T3, Key Eng. Mater, Vol. 449, pp. 15–22, 2010.

[19] A. Abbasi, S. Amini, Gh. Shikhzade, Investigation of ultrasonic peening technology on the GSH48 graphite steel, Modares Mechanical Engineering, Vol. 16, No. 9, pp. 29-36, 2016 (in Persian) [20] V.I. Tryfyakov, P.P. Mikheev, Y.F. Kudryavtsev and D.N. Reznik, Ultrasonic Impact Peening Treatment of welds and Its Effect on Fatigue Resistance in Air and Seawater, Offshore Technology Conference, pp.183-193, 1993.

 [21] A. Cherif, Y. Pyoun, B. Scholtes, “Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI 304”, J. Mater. Eng. Perform, Vol. 19 (2), pp. 282–286, 2010.

[22] Y.He, D.Wang, Y.Wang, H.Zhang, Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure, Transactions of Nonferrous Metals Society of China, pp. 1531−1537, 2015.

[23] L.Zhu,Y.Guan,Y.Wang,Z.Xie,J.Lin,J.Zhai,Influence of process parameters of ultrasonic shot peening on surface roughness and hydrophilicity of pure titanium, Surface and Coatings Technology, Volume 317, pp. 38-53, 2017.

 [24] Y. Feng, S. Hu, D. Wang, L. Cui, Formation of short crack and its effect on fatigue properties of ultrasonic peening treatment S355 steel, Materials & Design, Vol. 89, pp. 507515, 2016.

 [25] G.L.Prokopenko, O.I.Kozlov, Deviceforultrasonicpeening of metals, US Patent No. 6467321 B2, 2002.

 [26] K.L. Yuan, Y.Sumi, Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue strength,FractureandStructuralIntegrity,Vol.34,pp.476486, 2015.

[27] G. Le Quilliec, H.P. Lieurade, M. Bousseau, M. DrissiHabti, G. Inglebert, P. Macquet, L. Jubin, Mechanics and modelling of high-frequency mechanical impact and its effect on fatigue, Weld World, Vol. 57.1, pp. 97-111, 2013.