تغییر شکل پلاستیک شدید؛ نقش آن در بهبود خواص ایمپلنت های تیتانیومی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک، دانشگاه بیرجند، بیرجند

2 استاد دانشکدة مهندسی مکانیک، دانشکدة مهندسی، دانشگاه بیرجند، بیرجند

3 استادیار دانشکدة مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

مواد پایه تیتانیومی از جمله مهمترین مواد مورد استفاده در مهندسی پزشکی به‌شمار می‌روند. امروزه تیتانیوم خالص تجاری به‌دلیل زیست سازگاری بالا با بدن انسان، به‌طور فزاینده‌ای مورد توجه پژوهشگران قرار گرفته است. به‌منظور دستیابی به خواص مکانیکی بهتر، بدون به‌خطر انداختن دیگر خواص مفید تیتانیوم، همچنین به‌جهت رسیدن به ساختار ریزدانه از روش تغییر شکل پلاستیک شدید استفاده می­شود. اصلاح اندازة دانه توسط این روش به بهبود خواص مکانیکی و کاربردی تیتانیوم منجر خواهد شد. در این مقاله به مرور تکنیک­های مورد استفاده در تغییر شکل پلاستیک شدید به­منظور ساخت تیتانیوم خالص ریزدانه پرداخته شده است. همچنین طیف وسیعی از خواص تیتانیوم خالص تجاری که با ریزدانه کردن ساختار آن به روش تغییر شکل پلاستیک شدید به‌دست آمده است، از قبیل ریزساختاری، خواص مکانیکی، عملکرد در برابر خوردگی و زیست­سازگاری مورد مطالعه قرار گرفته است.

کلیدواژه‌ها


[1] C. M. Abraham, A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments, Open Dent. J., vol. 8, pp. 50–55, May 2014.

[2] R. M. Sullivan, Implant dentistry and the concept of osseointegration: a historical perspective, J Calif Dent Assoc, vol. 29, no. 11, pp. 737–745, 2001.

[3] S. Guizzardi et al., Different Titanium Surface Treatment Influences Human Mandibular Osteoblast Response, J. Periodontol., vol. 75, no. 2, pp. 273–282, Feb. 2004.

[4] H. Ishizawa, M. Ogino, Formation and characterization of anodic titanium oxide films containing Ca and P, J. Biomed. Mater. Res., vol. 29, no. 1, pp. 65–72, Jan. 1995.

[5] R. Adell, U. Lekholm, B. Rockler, P.-I. Brånemark, A 15-year study of osseointegrated implants in the treatment of the edentulous jaw, Int. J. Oral Surg., vol. 10, no. 6, pp. 387-416, Jan. 1981.

[6] M. Ghadiri, M. M. Mashhadi, M. Ghamami, Study of effective parameters of Parallel Tubular Channel Angular Pressing (PTCAP), Modares Mech. Eng., vol. 14, no. 16, pp. 27–33, 2015.

[7] M. A. Ranaei, A. Afsari, S. Yousef, A. Brooghani, Microstructure, Mechanical and Electrical Properties of Commercially Pure Copper Deformed Severely by Equal Channel Angular Pressing, Modares Mech. Eng., vol. 14, no. 15, pp. 257–266, 2015.

[8] A. V. Polyakov, I. P. Semenova, Y. Huang, R. Z. Valiev, T. G. Langdon, Fatigue life and failure characteristics of an ultrafine-grained Ti-6Al-4V alloy processed by ECAP and extrusion, Adv. Eng. Mater., vol. 16, no. 8, pp. 1038–1043, 2014.

[9] M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, “Processing of metals by equal-channel, J. Mater. Sci., vol. 6, pp. 2835–2843, 2001.

[10] R. B. Figueiredo, T. G. Langdon, Record Superplastic Ductility in a Magnesium Alloy Processed by Equal-Channel Angular Pressing, Adv. Eng. Mater., vol. 10, no. 1-2, pp. 37-40, Feb. 2008.

[11] C. Xu, Z. Horita, T. G. Langdon, the evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater., vol. 56, no. 18, pp. 5168–5176, 2008.

[12] M. Kawasaki, T. G. Langdon, developing superplasticity and a deformation mechanism map for the Zn-Al eutectoid alloy processed by high-pressure torsion, Mater. Sci. Eng. A, vol. 528, no. 19–20, pp. 6140–6145, 2011.

[13] M. Lewandowska, K. J. Kurzydlowski, Recent development in grain refinement by hydrostatic extrusion, J. Mater. Sci., vol. 43, no. 23, p. 7299, 2008.

[14] V. V Stolyarov, Y. E. Beigel’zimer, D. V Orlov, and R. Z. Valiev, Refinement of microstructure and mechanical properties of titanium processed by twist extrusion and subsequent rolling, Phys. Met. Metallogr., vol. 99, no. 2, pp. 204–211, 2005.

[15] H. Mora-Sanchez, I. Sabirov, M. A. Monclus, E. Matykina, J. M. Molina-Aldareguia, Ultra-fine grained pure Titanium for biomedical applications, Mater. Technol., pp. 1–16, Oct. 2016.

[16] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, vol. 45. 2000.

[17] A. A. Mendes Filho, V. L. Sordi, M. Ferrante, The effects of severe plastic deformation on some properties relevant to Ti implants, Mater. Res., vol. 15, no. 1, pp. 27–31, 2012.

[18] B. An et al., In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP, Mater. Sci. Eng. C, vol. 67, pp. 34–41, 2016.

[19] A. V. Polyakov, I. P. Semenova, R. Z. Valiev, Y. Huang, T. G. Langdon, Influence of annealing on ductility of ultrafine-grained titanium processed by equal-channel angular pressing–Conform and drawing, MRS Commun., vol. 3, no. 4, pp. 249–253, Dec. 2013.

[20] H. Mughrabi, H. Höppel, M. Kautz, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scr. Mater., vol. 51, no. 8, pp. 807–812, 2004.

[21] I. P. Semenova, A. V. Polyakov, G. I. Raab, T. C. Lowe, R. Z. Valiev, Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform, J. Mater. Sci., vol. 47, no. 22, pp. 7777–7781, Nov. 2012.

[22] A. E. Medvedev, R. Lapovok, Y. Estrin, T. C. Lowe, V. N. Anumalasetty, Bending Fatigue Testing of Commercial Purity Titanium for Dental Implants, Adv. Eng. Mater., vol. 18, no. 7, pp. 1166–1173, 2016.

[23] C. Fleck, D. Eifler, Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys, Int. J. Fatigue, vol. 32, no. 6, pp. 929–935, Jun. 2010.

[24] R. A. Antunes, M. C. L. de Oliveira, Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation, Acta Biomater., vol. 8, no. 3, pp. 937–962, Mar. 2012.

[25] M. C. Pereira, M. L. Pereira, J. P. Sousa, Evaluation of nickel toxicity on liver, spleen, and kidney of mice after administration of high-dose metal ion, J. Biomed. Mater. Res., vol. 40, no. 1, pp. 40–47, Apr. 1998.

[26] M. E. Ferreira, M. de L. Pereira, F. G. e Costa, J. P. Sousa, G. Simões de Carvalho, Comparative study of metallic biomaterials toxicity: a histochemical and immunohistochemical demonstration in mouse spleen, J. Trace Elem. Med. Biol., vol. 17, no. 1, pp. 45–49, Jan. 2003.

[27] H. Matusiewicz, Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles – A systematic analytical review, Acta Biomater., vol. 10, no. 6, pp. 2379–2403, Jun. 2014.

[28] A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, Preparation and assessment of revised simulated body fluids, J. Biomed. Mater. Res., vol. 65A, no. 2, pp. 188–195, May 2003.

[29] I. P. Semenova, G. V. Klevtsov, N. A. Klevtsova, G. S. Dyakonov, A. A. Matchin, R. Z. Valiev, Nanostructured Titanium for Maxillofacial Mini-Implants, Adv. Eng. Mater., no. 7, 2016.

[30] J. Prein, A. für Osteosynthesefragen, Manual of Internal Fixation in the Cranio-Facial Skeleton.: Techniques as recommended by the AO/ASIF-Maxillofacial Group, Springer, 1998.

[31] D. M. Brunette, Principles of Cell Behavior on Titanium Surfaces and Their Application to Implanted Devices, 2001, pp. 485–512.

[32] C. N. Elias, M. A. Meyers, R. Z. Valiev, S. N. Monteiro, Ultrafine grained titanium for biomedical applications: An overview of performance, J. Mater. Res. Technol., vol. 2, no. 4, pp. 340–350, Oct. 2013.

[33] I. P. Semenova, A. V. Polyakov, V. V. Polyakova, Y. Huang, R. Z. Valiev, T. G. Langdon, High-Cycle Fatigue Behavior of an Ultrafine-Grained Ti-6Al-4V Alloy Processed by ECAP and Extrusion, Adv. Eng. Mater., no. 14, pp. 1–6, 2016.

[34] Q. Chen, G. A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Reports, vol. 87, pp. 1–57, 2015.

[35] H. Güleryüz, H. Çimenoğlu, Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy, Biomaterials, vol. 25, no. 16, pp. 3325–3333, 2004.

[36] R. Kumazawa, F. Watari, N. Takashi, Y. Tanimura, M. Uo, Y. Totsuka, Effects of Ti ions and particles on neutrophil function and morphology, Biomaterials, vol. 23, no. 17, pp. 3757–3764, 2002.

[37] N. Coen, M. A. Kadhim, E. G. Wright, C. P. Case, C. E. Mothersill, Particulate debris from a titanium metal prosthesis induces genomic instability in primary human fibroblast cells, Br J Cancer, vol. 88, no. 4, pp. 548–552, 2002.