نگاهی بر خواص، عملکرد و پایداری نانوسیال‌ها و فروسیال ها

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 کارشناس ارشد مهندسی مکانیک، دانشکدة مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد نور

2 باشگاه پژوهشگران جوان و نخبگان، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران

چکیده

بهینه­سازی و افزایش بازده سیستم­های انتقال حرارت، یکی از اساسی­ترین چالش­های مهندسان و طراحان طی سالیان اخیر بوده است. از همین رو، استفاده از نانوذرات در سیالات پایه، به‌عنوان روشی غیرفعال در جهت بهبود انتقال حرارت و کوچک­سازی سیستم­های گرمایشی شناخته شده است و پژوهشگران متعددی در مطالعات خود به پیش­بینی رفتار و قابلیت­های کاربردی آنها با انواع روش‌های نظری، عددی و آزمایشگاهی پرداخته­اند. به همین دلیل، در این مقاله با هدف آشنایی با مبانی، سازوکار، مزایای بهره­گیری و همچنین چالش‌های استفاده از نانوسیالات، به بررسی خواص و ویژگی­های آنها پرداخته می­شود. سپس برای درک صحیح از سازوکارهای انتقال حرارت، مدل­های ارائه‌شده و جایگاه اکتشافات تجربی در این زمینه معرفی می­شوند. در ادامه با معرفی فروسیال­ها یا همان نانوسیال­های مغناطیسی، به کاربردهای آنها در صنایع گوناگون اشاره می­شود. در نهایت روش‌های بررسی و افزایش پایداری نانوسیالات به ‌تفصیل تشریح می‌شود.

کلیدواژه‌ها


[1] J. C. Maxwell, A treatise on electricity and magnetism, vol. 1, Clarendon press, 1881.

[2] R. Hamilton, O. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering chemistry fundamentals, vol. 1, no. 3, pp. 187-191, 1962.

[3] S. Chol, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed, vol. 231, no. 2, pp. 99-106, 1995.

[4] R. E. Rosensweig, Ferrohydrodynamics, New York: Dover, 2014.

[5] N. W. Pech-May, C. Vales-Pinzón, A. Vega-Flick, Á. Cifuentes, A. Oleaga, A. Salazar, et al., Study of the thermal properties of polyester composites loaded with oriented carbon nanofibers using the front-face flash method, Polymer Testing, vol. 50, no. 3, pp. 255-261, 2016.

[6] B. Buonomo, O. Manca, L. Marinelli, S. Nardini, Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method, Applied Thermal Engineering, vol. 91, no. 3, pp. 181-190, 2015.

[7] M. Xing, J. Yu, R. Wang, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, International Journal of Heat and Mass Transfer, vol. 88, no. 2, pp. 609-616, 2015.

[8] M. H. Esfe, S. Saedodin, An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Experimental thermal and fluid science, vol. 55, no. 6, pp. 1-5, 2014.

[9] M. Shariat, A. Akbarinia, A. H. Nezhad, A. Behzadmehr, R. Laur, Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts, Applied Thermal Engineering, vol. 31, no. 2, pp. 2348-2359, 2011.

[10] M. Shariat, R. M. Moghari, A. Akbarinia, R. Rafee, S. Sajjadi, Impact of nanoparticle mean diameter and the buoyancy force on laminar mixed convection nanofluid flow in an elliptic duct employing two phase mixture model, International Communications in Heat and Mass Transfer, vol. 50, no. 9, pp. 15-24, 2014.

[11] S. Z. Heris, M. N. Esfahany, G. Etemad, Numerical investigation of nanofluid laminar convective heat transfer through a circular tube, Numerical Heat Transfer, Part A: Applications, vol. 52, no. 3, pp. 1043-1058, 2007.

[12] S. Jafarmadar, N. Azizinia, N. Razmara, F. Mobadersani, Thermal Analysis and Entropy Generation of Pulsating Heat Pipes Using Nanofluids, Applied Thermal Engineering, 2016.

[13] M. H. Shojaeefard, J. Zare, M. Tahani, Numerical Simulation of the Thermal Performance of a Nanofluid-Filled Heat Pipe, Heat Transfer Engineering, vol. 37, no. 4, pp. 220-231, 2016.

[14] L. Kamble, D. Pangavhane, T. Singh, Artificial Neural Network Based Prediction of Heat Transfer from Horizontal Tube Bundles Immersed in Gas–Solid Fluidized Bed of Large Particles, Journal of Heat Transfer, vol. 137, no. 4, p. 012901, 2015.

[15] W. Azmi, K. Sharma, P. Sarma, R. Mamat, S. Anuar, L. S. Sundar, Numerical validation of experimental heat transfer coefficient with SiO 2 nanofluid flowing in a tube with twisted tape inserts, Applied Thermal Engineering, vol. 73, no. 8, pp. 296-306, 2016.

[16] M. Khoshvaght-Aliabadi, F. Hormozi, A. Zamzamian, Effects of geometrical parameters on performance of plate-fin heat exchanger: vortex-generator as core surface and nanofluid as working media, Applied Thermal Engineering, vol. 70, no. 1, pp. 565-579, 2014.

[17] M. Sarafraz, F. Hormozi, Pool boiling heat transfer to dilute copper oxide aqueous nanofluids, International Journal of Thermal Sciences, vol. 90, no. 1, pp. 224-237, 2015.

[18] J. Bi, K. Vafai, D. M. Christopher, Heat transfer characteristics and CHF prediction in nanofluid boiling, International Journal of Heat and Mass Transfer, vol. 80, no. 3, pp. 256-265, 2015.

[19] S. S. Meibodi, A. Kianifar, H. Niazmand, O. Mahian, S. Wongwises, Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO 2/EG–water nanofluids, International Communications in Heat and Mass Transfer, vol. 65, no. 1, pp. 71-75, 2015.

[20] C. H. Chon, K. D. Kihm, S. P. Lee, S. U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters, vol. 87, no. 1, p. 153107, 2005.

[21] S. S. Murshed, C. N. de Castro, Nanofluids: Synthesis, Properties, and Applications, Nova Science Publishers, Incorporated, 2014.

[22] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renewable and Sustainable Energy Reviews, vol. 43, no. 4, pp. 164-177, 2015.

[23] M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Thermal conductivity of AlO/water nanofluids, Journal of Thermal Analysis & Calorimetry, pp. 35-39, vol. 117, 2014.

[24] M. Chandrasekar, S. Suresh, A. C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al 2 O 3/water nanofluid, Experimental Thermal and Fluid Science, vol. 34, No. 1, pp. 210-216, 2010.

[25] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of heat and fluid flow, vol. 21, no. 2, pp. 58-64, 2000.

[26] S. Choi, Z. Zhang, W. Yu, F. Lockwood, E. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied physics letters, vol. 79, no. 3, pp. 2252-2254, 2012.

[27] X.-Q. Wang, A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International journal of thermal sciences, vol. 46, pp. 1-19, 2007.

[28] V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat transfer enhancement with nanofluids, CRC Press, 2015.

[29] G. Kefayati, Natural convection of ferrofluid in a linearly heated cavity utilizing LBM, Journal of Molecular Liquids, vol. 191, no. 5, pp. 1-9, 2014.

[30] R. Ganguly, S. Sen, I. K. Puri, Heat transfer augmentation using a magnetic fluid under the influence of a line dipole, Journal of Magnetism and Magnetic Materials, vol. 271, no. 1, pp. 63-73, 2004.

[31] J. de Vicente, D. J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review, Soft Matter, vol. 7, no. 3, pp. 3701-3710, 2011.

[32] J. Lee, I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, International Journal of Heat and Mass Transfer, vol. 50, no. 2, pp. 452-463, 2007.

[33] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, vol. 43, no. 2, pp. 3701-3707, 2000.

[34] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, vol. 28, no. 4, pp. 211-219, 2007.

[35] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer, vol. 128, no. 7, pp. 240-250, 2006.

[36] D. Wen, Y. Ding, Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels, Microfluidics and Nanofluidics, vol. 1, no. 2, pp. 183-189, 2005.

[37] X. Li, D. Zhu, X. Wang, N. Wang, J. Gao, H. Li, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H 2 O nanofluids, Thermochimica Acta, vol. 469, no. 3, pp. 98-103, 2008.

[38] L. Talbot, R. Cheng, R. Schefer, D. Willis, Thermophoresis of particles in a heated boundary layer, Journal of fluid mechanics, vol. 101, no. 4, pp. 737-758, 1980.

[39] C. Ho, W. Liu, Y. Chang, C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, vol. 4, no. 2, pp. 1345-1353, 2010.

[40] G. Huminic, A. Huminic, Heat transfer characteristics in double tube helical heat exchangers using nanofluids, International Journal of Heat and Mass Transfer, vol. 54, no. 9, pp. 4280-4287, 2011.

[41] H.-J. Chen, D. Wen, Ultrasonic-aided fabrication of gold nanofluids, Nanoscale research letters, vol. 6, no. 7, p. 198, 2011.