اصول و کاربردهای چسبندگی مارمولکی در سیستم‌های رباتیک و گریپرها

نوع مقاله: مقاله علمی ترویجی

نویسنده

استادیار دانشکده فنی، گروه مهندسی مکانیک، دانشگاه اراک، اراک

چکیده

پژوهشگرانی که درپی توسعه توانایی های ربات های قابل حرکت بوده اند، همواره نگاهی به سیستم های زیستی نیز داشته و از آنها الهام گرفته اند. مارمولک از جمله مخلوقات چابکی است که به طور قابل توجهی قدرت مانور و حرکت ماهرانه بر روی سطوح تخت و عمودی دارد. حتی بعضی از گونه های مارمولک توانایی بالارفتن و حرکت روی سطوح معکوس مانند سقف را هم دارند. مطالعه سیستم چسبندگی پاهای مارمولک منجر به طراحی چسبنده های ترکیبی مصنوعی در سال های اخیر شده است. یک ساختار چسبندگی مارمولکی طبیعی براساس جهت عمل کرده و مارمولک را قادر می سازد چسبندگی پاهایش را با انواع سطوح تنظیم کند. این مقاله پس از مرور تاریخچه فناوری چسبندگی مارمولکی به روش های ساخت این چسبنده ها پرداخته و کاربردهای آن را در انواع سیستم های رباتیک و گریپرها بررسی می کند. چسبندگی بدون استفاده از انرژی در این گریپرها کاربری آنها را در مکان های خاص مانند ربات های اکتشاف فضایی یا ایستگاه ها و سفینه های فضایی جذاب می کند.

کلیدواژه‌ها


[1] B. C. Mahendra, Contribution to the bionomics, anatomy, reproduction and development of the Indian house-gecko, hemidactylus aviviridis. the problem of locomotion, Proceedings of the Indian Academy of Science, Vol. 4, pp. 288-306,1941.

[2] P. Maderson, Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards, Nature, Vol. 203, pp. 780-781, 1964.

[3] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Adhesive force of a single gecko foot-hair, Nature, Vol. 405, No. 6787, pp. 681-685, 2000.

[4] K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, R. J. Full, Evidence for van der waals adhesion in gecko setae, Proceeding National Academic Science USA, Vol. 99, No. 19, pp. 252-256, 2002.

[5] A. Russell, M. Johnson, S. Delannoy, Insights from studies of gecko inspired adhesion and their impact on our understanding of the evolution of the gekkotan adhesive system, Journal of Adhesion Science and Technology, Vol. 21, No. 12-13, pp. 1119-1143, 2007.

[6] A. Russell, Integrative functional morphology of the gekkotan adhesive system (reptilia: Gekkota) 1, Integrative and Comparative Biology, Vol. 42, No. 6, pp. 1154-1163, 2002.

[7] K. Autumn, Gecko adhesion: structure, function, and applications, MRS Bulletin, Vol. 32, pp. 473-478, 2007.

[8] K. Autumn, A. Peattie, Mechanisms of adhesion in geckos, Integrated Computational Biology, Vol. 42, pp. 1081-1090, 2002.

[9] R. Ruibal, V. Ernst, The structure of the digital setae of lizards, Journal of Morphology, Vol. 117, No. 3, 1965.

[10] N. Rizzo, K. Gardner, D.Walls, N. Keiper-Hrynko, T. Ganzke, D. Hallahan, Characterization of the structure and composition of gecko adhesive setae, Journal of The Royal Society Interface, Vol. 3, No. 8, pp. 441-451, 2005.

[11] A. Russell and V. Bels, Digital hyperextension in anolis sagrei, Herpetologica, Vol. 57, pp. 58-65, 2001.

[12] K. Autumn, W. Hansen, Ultrahydrophobicity indicates a non-adhesive default state in gecko setae, Journal of Comparative Physiology A: Neuroethology, Vol. 192, No. 11, pp. 1205-1212, 2006.

[13] K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, Frictional adhesion: a new angle on gecko attachment, Journal of Experimental Biology, Vol. 209, No. 18, pp. 3569-3579, 2006.

[14] K. Johnson, K. Kendall, and A. Roberts, Surface energy and the contact of elastic solids, Proceeding Royal Society London A., Vol. 324, No. 15, pp. 301-313, 1971.

[15] K. Kendall, Thin- lm peeling - elastic term, Journal of Physic D Applied Physic, Vol. 8, No. 13, pp. 1449-1452, 1975.

[16] S. Goyal, A. Ruina, J. Papadopoulos, Limit surface and moment function descriptions of planar sliding, proceeding of IEEE International Conference on Robotics and Automation, Scottsdale, USA, May 14-19, 1989.

[17] A. del Campo, E. Arzt, Fabrication approaches for generating complex micro-and nanopatterns on polymeric surfaces, Chemical Review, Vol. 108, No. 3, pp.911-945, 2008.

[18] A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nature Material, Vol. 2, No. 7, pp. 461-463, 2003.

[19] H. Jeong, S. Lee, P. Kim, K. Suh, Stretched polymer nanohairs by nanodrawing, Nano Letters, Vol. 6, No. 7, pp. 1508-1513, 2006.

[20] E. Yoon, R. Singh, H. Kong, B. Kim, D. Kim, H. J. K. Suh, Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer, Tribology Letters, Vol. 21, No. 1, pp.31-37, 2006.

[21] Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive, Journal of Vacuum Science & Technology B: Microelectronics, Vol. 24, No. 1, pp. 331-335, 2006.

[22] L. Qu, L. Dai, M. Stone, Z. Xia, Z. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting, Science, Vol. 322, pp. 238-242, 2008.

[23] M. T. Northen, K. L. Turner, A batch fabricated biomimetic dry adhesive, Nanotechnology, Vol. 16, No. 8, pp. 1159-1166, 2005.

[24] M. Murphy, S. Kim, M. Sitti, Enhanced adhesion by gecko-inspired hierarchical _brillar adhesives, ACS Applied Materials & Interfaces, Vol. 1, No. 4, pp. 849-855, 2009..

[25] H. E. Jeong, J.-K. Lee, H. N. Kim, S. H. Moon, K. Y. Suh, A nontransferring dry adhesive with hierarchical polymer nanohairs, Proceeding National Academic Science USA, Vol. 106, No. 14, pp. 5639-44, 2009.

[26] J. Lee, B. Bush, R. Maboudian, R. Fearing, Gecko-inspired combined lamellar and nano brillar array for adhesion on nonplanar surface, Langmuir, Vol. 25, No. 21, pp. 449-453, 2009.

[27] Z. Dai, M. Yu, S. Gorb, Adhesion characteristics of polyurethane for bionic hairy foot, Journal of Intelligent Material Systems and Structures, Vol. 17, No.8-9, pp. 737-741, 2006.

[28] D. Santos, M. Spenko, A. Parness, S. Kim, M. Cutkosky, Directional adhesion for climbing: theoretical and practical considerations, Journal of Adhesion Science and Technology, Vol. 21, No. 12-13, pp. 1317-1341, 2007.

[29] C. Hui, A. Jagota, L. Shen, A. Rajan, N. Glassmaker, Design of bioinspired brillar interfaces for contact and adhesion|theory and experiments, Journal of Adhesion Science and Technology, Vol. 22, No. 14, pp.1456-1460, 2007.

[30] K. Daltorio, A. Horchler, S. Gorb, R. Ritzmann, R. Quinn, A small wallwalking robot with compliant, adhesive feet, Proceedings IEEE IRS, 2005.

[31] S. Gorb, M. Varenberg, A. Peressadko, and J. Tuma, Biomimetic mushroomshaped _brillar adhesive microstructure, Journal of The Royal Society Interface, Vol. 4, No. 13, pp. 271-275, Oct 2006.

[32] A. del Campo, C. Greiner, E. Arzt, Contact shape controls adhesion of bioinspired brillar surfaces, Langmuir, Vol. 21, No. 12, pp. 234-240, 2007.

[33] B. Aksak, M. P. Murphy, and M. Sitti, Adhesion of biologically inspired vertical and angled polymer micro_ber arrays, Langmuir: the ACS journal of surfaces and colloids, Vol. 23, No. 6, pp. 3322-32, 2007.

[34] M. Murphy, B. Aksak, M. Sitti, Adhesion and anisotropic friction enhancements of angled heterogeneous micro-_ber arrays with spherical and spatular tips, Journal of Adhesion Science and Technol, Vol. 21, No. 12-13, pp. 1281-1296, 2007.

[35] A Kathryn, Daltorio and Stanislav Gorb, A Robot that Climbs Walls using Micro-structur Polymer Feeet, In proceeding of 8th international conference on climbing and walking robots, UK, 2005.

[36] Arash Kalantari, Karan Mahajan, Donald Ruffatto and Matthew Spenko, Autonomous Perching and Take-off on Vertical Walls for a Quadrotor Micro Air Vehicle, 2015 IEEE International Conference on Robotics and Automation, Washington, USA, May 26-30, 2015

[37] Michael P. Murphy, Casey Kute, Yi˘git Mengüç and Metin Sitti, Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot using Fibrillar Adhesives, The International Journal of Robotics Research, Vol. 30, No. 1, pp.118-133.2012.

[38] Elliot W. Hawkes, Hao Jiang, Mark R. Cutkosky, Three-dimensional dynamic surface grasping with dry adhesion, The International Journal of Robotics Research, Vol. 35, No.8, pp.943–958, 2016.

[39] Elliot W. Hawkes, Eric V. Eason, Alan T. Asbeck, Mark R. Cutkosky, The Gecko’s Toe: Scaling Directional Adhesives for Climbing Applications, IEEE/ASME transactions on mechatronics, Vol. 18, No. 2, 2013

[40] Ozgur Unver, Metin Sitti, Tankbot: A Palm-size, Tank-like Climbing Robot using Soft Elastomer Adhesive Treads, The International Journal of Robotics Research, Vol. 29, No. 14, pp. 1761–1777, 2010.