ساخت سطوح بادوام فوق آبگریز روی بسترهای چوبی با نانوذرات SiO2 و TiO2

نوع مقاله : علمی پژوهشی

نویسنده

گروه مهندسی مکانیک دانشکده فنی مهندسی دانشگاه ازاد اسکو ایران

چکیده

چکیده: در این تحقیق مقایسه ای بین سطوح فوق آبگریز بدست آمده با نانو ذرات SiO2 و TiO2 بهمراه اصلاح شیمیایی سطح روی بسترهای چوب و بامبو انجام شده است. فوق آبگریز بودن سطح از نظر سطح شناسی، ثبات مکانیکی ،پایداری بلند مدت و قابلیت خود تمیزشوندگی با اندازه گیری مقادیر زاویه تماس آب و زاویه لغزش بررسی شده است.

فوق آبگریزی سطح بوسیله انجام تست سایش مکانیکی در برابر سنباده 1500 مش و تست ثبات و پایداری بلند مدت با قرار گرفتن نمونه در محیط جو بیش از 180روزانجام شد ، که با زاویه تماس° 2±155 و زاویه لغزش° 2±6 تایید شد، و هم چنین خاصیت خود تمیز شوندگی سطح نیز بررسی شد. بدلیل انعطاف پذیری و سادگی آزمایش ، روشی آسان و ارزان برای دستیابی به خواص نیلوفر آبی است و برای تهیه سطوح فوق آبگریز در کاربردهای عملی در مقیاس بزرگ ارزش بالایی را از خود نشان می دهد.

کلیدواژه‌ها

موضوعات


[1] Zhi, J., Zhang, L-Z., Durable super hydrophobic surface with highly anti reflective and self-cleaning properties for the glass covers of solar cells, Appl Surf Sci., Vol. 454, pp. 239–248, (2018).
 
[2] Yu, N., Xiao, X., Ye, Z., and et al., Facile preparation of durable super hydrophobic coating with self-cleaning property, Surf Coat Technol., Vol. 347, pp. 199–208, (2018).
 
[3] Zhang, Z-H., Wang, H-J., Liang, Y-H., and et al., One-step fabrication of robust super hydrophobic and super  oleophilic surfaces with self-cleaning and oil/water separation function, Sci Rep., Vol. 8, pp. 3869, (2018).
 
[4] Zulfiqar, U., Hussain, S.Z., Subhani, T., and et al., Mechanically robust super hydrophobic coating from sawdust particles and carbon soot for oil/water separation, Colloids Surf, A., Vol. 539, pp. 391–398, (2018).
 
[5] Zhu, Y., Sun, F., Qian, H., and et al., A biomimetic spherical cactus superhydrophobic coating with durable and multiple anti-corrosion effects, Chem. Eng. J., Vol. 338, pp. 670–679, (2018).
 
[6] Ye, Y., Liu, Z., Liu, W., and et al., Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel, Chem. Eng. J., Vol. 348, pp. 940–951, (2018).
 
[7] Zhou, S., Wang, F., Balachandran, S., and et al., Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties. RSC Adv., Vol. 7, pp. 52375–52381, (2017).
 
[8] Shaban, M., Mohamed, F., Abdallah, S., Production and characterization of super hydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst, Sci. Rep.,Vol. 8, pp. 3925, (2018).
 
[9] Zuo, Z., Liao, R., Song, X., and et al., Improving the anti-icing/frosting property of a nano structured super hydrophobic surface by the optimum selection of a surface modifier, No. 36, (2018).
 
[10] Cheng, Y., Lu, S., Xu, W., and et al., Controllable fabrication of super hydrophobic alloys surface on copper substrate for self-cleaning, anti-icing, anti-corrosion and antiwear performance, Surf Coat Technol.,Vol. 333, pp. 61–70, (2018).
 
[11] Jafari, R., Momen, G., Eslami, E., Fabrication of icephobic aluminium surfaces by atmospheric plasma jet polymerisation, Surf. Eng., DOI:10.1080/02670844, (2018).
 
[12] Zhou, X., Lee, Y-Y., Chong, KSL., and et al., Super hydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance, J. Mater Chem. B., Vol. 6, pp. 440–448, (2018).
 
[13] Wang, Y., He, G., Shao, Y., and et al., Enhanced performance of super hydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment, Sep Purif Technol., DOI:10.1016/j., seppur.2018.02.011, (2018).
 
[14] Zhu, T., Cai, C., Duan, C., and et al., Robust polypropylene fabrics super-repelling various liquids: a simple, rapid and scalable fabrication method by solvent swelling, ACS Appl Mater Interfaces., Vol. 7, pp. 13996–14003, (2015).
 
[15] Gao, L., Xiao, S., Gan, W., Zhan, X., Li, J., Durable super amphiphobic wood surfaces from Cu2O film modified with fluorinated alkylsilane, RSC Adv. 55 98203–98208, (2015).
 
[16] Gao, L., Lu, Y., Zhan, X., Li, J., Sun, Q., Arobust, anti-acid,and high temperature humidity resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkylsilane, Surf. Coat. Technol., pp. 26233–39, (2015).
 
[17] Tu, K., Wang, X., Kong, L., Chang, H., Liu,  J., Fabrication of robust, damage -tolerant super hydrophobic coatings on naturally micro-grooved wood surfaces, RSC Adv., (2015).
 
[18] Zhang, D., Li, L., Wu, Y., and et al., One-step method for fabricationof bio inspired hierarchical super hydrophobic surface with robust stability, Appl. Surf. Sci., Vol. 473, pp. 493–499, ( 2019).
 
[19] Zhou, Y., Ma, Y., Sun, Y., and et al., Robust super hydrophobic surface based on multiple hybrid coatings for application in corrosion protection, ACS Appl. Mater nterfaces.,Vol. 11, pp. 6512–6526, (2019).
 
[20] Lou, C., Zhang, R., Lu, X., and et al., Facile fabrication of epoxy/ polybenzoxazine based super hydrophobic coating with enhanced corrosion resistance and high thermal stability, Colloids Surf., A., Vol. 562, pp. 8–15, (2019).
 
[21] Zhang, J., Chen, R., Liu, J., and et al., Construction ofZnO@Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation, Surf Coat Technol., Vol. 357, pp. 244–251, (2019).
 
[22] Zhao, X., Li, Y., Li, B., and et al., Environmentally benign and durable super hydrophobic coatings based on SiO2 nanoparticles and silanes, J Colloid Interface Sci., Vol. 542, pp. 8–14, (2019).
 
[23] Latthe, SS., Sutar, RS., Shinde, TB., and et al., Super hydrophobic leaf mesh decorated with SiO2 nanoparticle-polystyrene nanocomposite for oil–water separation, ACS Appl. Nano Mater., Vol. 2, pp. 799–805, (2019).
 
[24] Yang, M., Liu, W., Jiang, C., and et al., Robust fabrication of      superhydrophobic and photocatalytic self-cleaning        cotton textile based on TiO2 and fluoroalkylsilane, J. Mater Sci., Vol. 54, pp. 2079–2092, (2019).
 
[25] Wang, Y., Huang, Z., Gurney, RS., and et al., Super hydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multi functionality, Colloids Surf., A., Vol. 561, pp. 101–108, (2019).
 
[26] Yuan, Z., Bin, J., Wang, X., and et al., Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating, Surf. Coat Technol., Vol. 254, pp. 97–103, (2014).
 
[27] Wang, M., Zhang, M., Pang, L., and et al., Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance, J. Colloid Interface Sci.,Vol. 537, pp. 91–100, (2019).
 
[28] Zhao, X., Li, Y., Li, B., and et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes, J. Colloid Interface Sci., Vol. 542, pp. 8–14, (2019).
 
[29] Latthe, S.S., Sutar, R.S., Shinde, T.B., and et al. Superhydrophobic leaf mesh decorated with SiO2 nanoparticle-polystyrene nanocomposite for oil–water separation, ACS Appl. Nano Mater., Vol. 2, pp. 799–805, (2019).
 
[30] Lin, W., Cao, M., Olonisakin, K.,  Li, R., Zhang, Xi., Yang,. W., Superhydrophobic materials with good oil/water separation and self-cleaning prepared through a
environment-friendly and two-component method, Cellulose, Vol. 28, pp. 10425-10439, (2021).
 
[31] Li, J., et al., Durable, self-cleaning and superhydrophobic bambootimber surfaces basedonTiO2 films combined with fluoroalkylsilane, CeramicsInternational, http://dx.doi.org/10.1016/j.ceramint.2016.03.047i, (2016).
 
[32] Hu, J., Fang, Z., Huang, Y., and Lu, J., Fabrication of superhydrophobic surfaces based on fluorosilane and TiO2/SiO2 nanocomposites, Surface Engineering, DOI: 10.1080/02670844.2020.1730059, (2020).