طراحی الگوریتم تعقیب هدف برای حرکت گروهی ربات ها

نوع مقاله : علمی پژوهشی

نویسنده

استادیار، گروه هوایی، دانشگاه علوم انتظامی امین، تهران

چکیده

در این مقاله به معرفی روش های مختلف در خصوص حرکت چیدمانی ربات ها و احصاء معایب و محاسن این روش ها پرداخت شده است. با ترکیب روش های تابع پتانسیل، ساختار مجازی و تعقیب رهبر، الگوریتمی بدست می آید که ضمن دارا بودن محاسن روش های مزبور، معایب و چالش های این روش ها را نیز تا حد زیادی بر طرف کرده است. الگوریتم حاصل جهت طراحی مسیر مطلوب حرکت ربات ها مورد استفاده قرار می گیرد و یک کنترل کننده مد لغزشی بعنوان ابزاری مفید برای مجبور نمودن ربات ها جهت تبعیت از این مسیرهای مطلوب نقش ایفاء می کند. در نهایت برای ارزیابی کارکرد سامانه طراحی شده، حرکت یک گروه شش تایی از ربات های غیرهولونومیک که یک هدف را بصورت چیدمان مثلثی در برگرفته اند، در نرم افزار متلب مورد شبیه سازی قرار گرفته است. با تجریه و تحلیل نتایج بدست آمده و مقایسه با کارهای انجام شده سایر محققین، مشخص شد که الگوریتم معرفی شده مزایای مهمی نسبت به کارهای قبلی، از قبیل: کاهش حجم محاسبات، حذف حداقل های محلی توابع پتانسیل، کاهش محدوده تغییرات ورودی های کنترلی دینامیک ربات ها و کاهش تعداد ضرایب وزنی جهت تنظیم توابع پتانسیل را به همراه دارد. لازم به ذکر است مزایای های حاصل، این روش را برای کاربردهای عملی مناسب تر می کند. 

کلیدواژه‌ها

موضوعات


[1] Dang, A., and Horn, J., Formation control of leaderfollowing uavs to track a moving target in a dynamic environment, Journal of Automation and Control Engineering, Vol. 3(1), (2015).
[2] Achmadi, S., Marjono, and Miswanto, Analysis multi-agent with precense of the leader, in AIP Conference Proceedings, AIP Publishing LLC, (2017).
[3] Consolini, L., and et al., Leader–follower formation control of nonholonomic mobile robots with input constraints, Automatica, Vol. 44(5), pp. 1343-1349, (2008).
[4] Peng, Z., and et al., Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics, IEEE Transactions on Control Systems Technology, Vol. 21(2), pp. 513-520, (2012).
[5] Qian, D., Tong, S., and Li, C., Leader‐Following Formation Control of Multiple Robots with Uncertainties through Sliding Mode and Nonlinear Disturbance Observer, Etri Journal, Vol.38(5), pp. 1008-1018, (2016).
[6] Ren, W., and Beard, R.W., Decentralized scheme for spacecraft formation flying via the virtual structure approach, Journal of Guidance, Control, and Dynamics, Vol. 27(1), pp. 73-82, (2004).
[7] Lewis, M.A., and Tan, K.-H., High precision formation control of mobile robots using virtual structures, Autonomous robots, Vol. 4(4), pp. 387- 403, (1997).
[8] Pantelimon, G., et al., Survey of Multi-agent Communication Strategies for Information Exchange and Mission Control of Drone Deployments, Journal of Intelligent & Robotic Systems, Vol. 95(3-4), pp. 779-788, (2019).
[9] Liu, Y., and Bucknall, R., A survey of formation control and motion planning of multiple unmanned vehicles, Robotica, Vol. 36(7), pp. 1019-1047, (2018).
[10] Issa, B., and A.T., Rashid, A survey of Multi-Mobile Robots Formation Control, International Journal of Computer Applications, Vol. 181(48), pp. 12-16, (2019).
[11] Ai, X.L., and et al., Optimal formation control with limited communication for multi-unmanned aerial vehicle in an obstacle-laden environment, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231(6), pp. 979-997, (2017).
[12] Do, K.D., and Pan, J., Nonlinear formation control of unicycle-type mobile robots, Robotics and Autonomous Systems, Vol. 55(3), pp. 191-204,
(2007).
[13] Lee, G., and Chwa, D., Decentralized behaviorbased formation control of multiple robots considering obstacle avoidance, Intelligent Service Robotics, Vol. 1(11), pp. 127-138, (2018).
[14] Alasty A., Etemadi, E.S., and Roshan-Ghalb F., Behavioral Control of Autonomous Swarms, in 16th. Annual (International) Conference on Mechanical Engineering-ISME 2008, Shahid Bahonar University of Kerman: Iran, (2008).
[15] Balch, T., and Arkin, R.C., Behavior-based formation control for multirobot teams, IEEE transactions on robotics and automation, Vol. 14(6), pp. 926-939, (1998).
[16] Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, in Autonomous robot vehicles, Springer, pp. 396-404, (1986).
[17] Dang, A.-D., and et al., Distributed formation control for autonomous robots in dynamic environments. arXiv preprint arXiv:1705.02017, (2017).
[18] Keymasi Khalaji, A., and Tourajizadeh, H., Nonlinear Lyapounov based control of an underwater vehicle in presence of uncertainties and obstacles, Ocean Engineering, Vol. 198, pp. 106998, (2020).
[19] Keymasi Khalaji, A., and saadat, I., Tracking control of quadrotors in the presence of obstacles based on potential field method, Amirkabir Journal of Mechanical Engineering, Vol. 53 (Issue 2 (Special Issue)), pp. 1095-1110, (2021).
[20] Shibahara, S., Wakasa, T., and Sawada, K., Network weight and time-varying potential function for obstacle avoidance of swarm robots in column formation, SICE Journal of Control, Measurement, and System Integration, Vol. 15(1), pp. 24-35, (2022).
[21] Harder, S.A., and Lauderbaugh, L.K., Formation specification for control of active agents using artificial potential fields, Journal of Intelligent and Robotic Systems, Vol. 95(2), pp. 279-290, (2019).
[22] Gazi, V., and et al., Aggregation, foraging, and formation control of swarms with non-holonomic agents using potential functions and sliding mode techniques, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 15(2), pp. 149-168, (2007).
[23] Yao, J., Ordonez, R., and Gazi, V., Swarm tracking using artificial potentials and sliding mode control, (2007).
[24] Gazi, V., and et al., A target tracking approach for nonholonomic agents based on artificial potentials and sliding mode control, Asme, (2012).
[25] Olfati-Saber, R., Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Transactions on automatic control, Vol. 51(3), pp. 401-420, (2006).
[26] Utkin, V., and et al., Conventional and high order sliding mode control, Journal of the Franklin Institute, Vol. 357(15), pp. 10244-10261, (2020).
[27 Hu, J., and et al., A survey on sliding mode control for networked control systems, International Journal of Systems Science, Vol. 52(6), pp. 1129-1147, (2021).
[29] Gazi, V., and Passino, K.M., Swarm stability and optimization, Springer Science and Business Media, (2011).