یک روش نوآورانه اندازه گیری دنباله ایرفویل نوسانی با استفاده از جریان سنج های سیم داغ

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار

2 استاد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار

چکیده

امروزه اندازه گیری پارامترهای جریان دنباله ایرفویل نوسانی به سبب کاربردهای گسترده آن در صنعت و طبیعت از اهمیت بالایی برخوردار است. لذا هدف از انجام این پژوهش ارائه یک روش نوآورانه برای اندازه‌گیری تجربی جریان دنباله ایرفویل نوسانی NACA0012 است. بدین منظور از سه سنسور جریان سنج سیم داغ یک بعدی که یکی از آنها ثابت و دو سنسور دیگر متحرک هستند استفاده شد. با استفاده برنامه نویسی نرم افزار متلب و ارتباط بین داده های این سه سنسور همبستگی مکانی و زمانی سرعت جریان در تمامی نقاط دنباله بدست آمد. نتایج این پژوهش نشان داد که می توان با تجهیزات سخت افزاری کمتر نسبت به سایر پژوهش ها پارامترهای مختلف جریان دنباله را اندازه گیری کرد. در این روش با حذف خطاهای ناشی از تعداد زیاد سنسورها و با افزایش تعداد نقاط داده برداری در دنباله با دقت بالاتری پارامترهای جریان اندازه گیری شده است. نتایج حاصل نشان داد که ترکیب مومنتوم جریان آزاد با مومنتوم حرکت نوسانی ایرفویل، یک جریان سینوسی با همان فرکانس نوسان ایرفویل را در دنباله ایجاد می کند. ناحیه ناشی از حرکت گردابه ها و ناحیه ناشی از نفوذ مومنتوم حرکت گردابه ها به سایر قسمت های دنباله، دو بخش دنباله ایرفویل نوسانی را تشکیل می دهند.

کلیدواژه‌ها


[1] Lu, B., Bragg, M., Experimental investigation of airfoil drag measurement with simulated leading-edge ice using the wake survey method, 18th Applied Aerodynamics Conference, (2000).
 
[2] Richter, K., and et al., Experimental investigation of unsteady transition on a pitching rotor blade airfoil, Journal of the American Helicopter Society, Vol. 59, No. 1, pp. 1-12, (2014).
 
[3] Thielicke, W., The flapping flight of birds: Analysis and application, University of Groningen, (2014).
 
[4] Floryan, D., Van Buren, T., and Smits, A.J., Efficient cruising for swimming and flying animals is dictated by fluid drag. Proceedings of the National Academy of Sciences, Vol. 115, No. 32, pp. 8116-8118, (2018).
 
[5] Boroumand, B.B., Mani M., Wake measurements of oscillating supercritical airfoil in compressible flow, Transactions of the Canadian Society for Mechanical Engineering, Vol. 43, No. 1, pp. 112-121, (2019).
 
[6] Li, Q.a., and et al., Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer. Energy, Vol. 183, pp. 341-357, (2019).
 
[7] Gooding, W.J., and Fabian, J.C., Key, Laser Doppler Velocimetry Characterization of Unsteady Vaned Diffuser Flow in a Centrifugal Compressor, Journal of Turbomachinery, Vol. 142, No. 4, (2020).
 
[8] Gharali, K., Gu, M., and Johnson, D.A., A PIV Study of a low Reynolds number pitch oscillating SD7037 Airfoil in dynamic stall with CFD comparison, in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, (2012).
 
 [9] Gerontakos, P., and Lee, T., PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection, Experiments in fluids, Vol. 45, No. 6, pp. 955. (2008).
 
[10] Sadeghi, H., Mani, M., and Ardakani, M., Effect of amplitude and mean angle of attack on wake of an oscillating airfoil. in Proceedings of World Academy of Science, Engineering and Technology. (2008).
 
[11] Soltani, M., and Mahmoudi, M., Measurements of velocity field in the wake of an oscillating wind turbine blade, The Aeronautical Journal, Vol. 114, No. 1158, pp. 493-504, (2010).
 
[12] Tabrizian, A., and et al., An experimental study on boundary layer transition detection over a pitching supercritical airfoil using hot-film sensors, International Journal of Heat and Fluid Flow, Vol. 86, pp. 108743, (2020).
 
[13] Mamouri, A.R., Khoshnevis, A.B., and Lakzian, E., Experimental study of the effective parameters on the offshore wind turbine's airfoil in pitching case, Ocean Engineering, Vol. 198, pp. 106955, (2020).
 
 [14] Boroumand, B.B., and Mani, M., Experimental and Numerical Study of the Unsteady Wake of a Supercritical Airfoil in a Compressible Flow, Journal of Aerospace Technology and Management, Vol. 11, (2018).
 
[15] Yanovych, V., and et al., Hot-Wire Investigation of Turbulence Topology behind Blades at Different Shape Qualities, Processes, Vol. 10, No. 3, pp. 522, (2022).
 
[16] Tian, W., and et al., An experimental study of the effects of pitch-pivot-point location on the propulsion performance of a pitching airfoil, Journal of fluids and structures, Vol. 60, pp. 130-142, (2016).
 
 [17] Lian, Y., Blockage effects on the aerodynamics of a pitching wing. AIAA journal, Vol. 48, No. 12, pp. 2731-2738, (2010).
 
 [18] Kouhi, E., and Abdolamir,  B.K., Experimental investigation of the flow structure around a pitching airfoil by mean and instantaneous data, Iranian Journal of Mechanical Engineering Transactions of the ISME, (2022).
 
[19] Sadeghi, H., and Mani. M., An experimental wake analysis of a pitching airfoil. in 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Krakow, (2009).
 
[20] Choudhry, A., and et al., An insight into the dynamic stall lift characteristics, Experimental Thermal and Fluid Science, Vol. 58, pp. 188-208, (2014).