بررسی رفتار پلیمرهای حافظه‌شکلی پاسخگو به حرارت

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه جامع امام حسین (ع)، تهران

2 استادیار، گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه جامع امام حسین ع، تهران

3 پژوهشگر، گروه مهندسی مکانیک، دانشگاه جامع امام حسین (ع)، تهران

چکیده

پلیمرهای حافظه شکلی دستهای از مواد هوشمند هستند که به هنگام قرارگیری در معرض محرک های
خارجی شامل دما، میدان مغناطیسی، نور و میدان الکتریکی میتوانند شکل اولیهی خود را بازیابی کنند. یکی از
پرکاربردترین دسته از این پلیمرها، پلیمرهای حافظه شکلی پاسخگو به حرارت هستند. این پلیمرها دارای مزایایی
ازجمله درصد بالای بازیابی شکلی و هزینهی تولید پایین میباشند و بهکارگیری آنها منجر به کاهش سازوکارهای
پیچیده و به تبع آن، کاهش وزن و حجم سیستم ها میشود. پلیمرهای حافظه شکلی پاسخگو به حرارت در زمینه
های متعددی ازجمله پزشکی، رباتیک، مکانیک و هوافضا کاربرد داشته و منجر به تحولات عظیمی شده اند. هدف از
ارائه این مقاله بررسی رفتار پلیمرهای حافظه شکلی پاسخگو به حرارت و کاربردهای مختلف آنها است. در واقع با
بررسی چرخه حرارت - مکانیکی، مدلهای ساختاری، انواع مختلف اثر حافظه شکلی، کاربردهای مختلف، آینده و
چالشهای این پلیمرها ازجمله نیروی بازیابی کم و ارائه راهکار آن و تهیه جداول مختلف از تحقیقات اخیر سعی شده
است این مواد بهطور جامع بررسی شوند. با توجه به ویژگیهای منحصر به فرد این پلیمرها و تلاش برای رفع محدودیت
های آنها، در آینده جایگزین بسیاری از عملگرهای مکانیکی خودمونتاژ شونده خواهند شد.

کلیدواژه‌ها

موضوعات


[1] Municoy, S., Álvarez Echazú, MI., Antezana, PE.,
Galdopórpora, JM., Olivetti, C., Mebert, AM., et al.,
"Stimuli-Responsive Materials for Tissue Engineering
and Drug Delivery", International Journal of Molecular
Sciences, Vol. 21, No. 13, pp. 4724, (2020).
[2] González-Henríquez, CM., Sarabia-Vallejos, MA.,
Rodriguez-Hernandez, J., "Polymers for additive
manufacturing and 4D-printing: Materials,
methodologies, and biomedical applications", Progress
in Polymer Science, Vol. 94, pp. 57-116, (2019).
[3] Cui, X., Chen, J., Zhu, Y., Jiang, W., "Natural
sunlight-actuated shape memory materials with
reversible shape change and self-healing abilities based
on carbon nanotubes filled conductive polymer
composites", Chemical Engineering Journal, Vol. 382,
pp. 122823, (2020).
[4] Erkeçoglu, S., Sezer, AD., Bucak, S., "Smart
Delivery Systems with Shape Memory and Self-Folding
Polymers", Smart Drug Delivery System: InTech, (2016).
[5] jahangiri, M., Bagheri, M., "A short review on
medical applications of shape memory polymers",
Basparesh, Vol. 6, No. 1, pp. 33-42, (2016). (in
Persian (فارسی
[6] Liang, R., Yu, H., Wang, L., Amin, BU., Wang, N.,
Fu, J., et al., "Triple and Two-Way Reversible Shape
Memory Polymer Networks with Body Temperature and
Water Responsiveness", Chemistry of Materials, Vol. 33,
No. 4, pp. 1190-200, (2021).
[7] Jose, S., George, JJ., Siengchin, S.,
Parameswaranpillai, J., "Introduction to Shape-Memory
Polymers, Polymer Blends and Composites: State of the
Art, Opportunities, New Challenges and Future
Outlook", Advanced Structured Materials: Springer
Singapore, pp. 1-19. (2019).
[8] Hager, MD., Bode, S., Weber, C., Schubert, US.,
"Shape memory polymers: Past, present and future
developments", Progress in Polymer Science, Vol. 49-
50, pp. 3-33, (2015).
[9] Tandon, G., Baur, J., McClung, A., "Shape Memory
Polymers for Aerospace Applications: Novel Synthesis,
Modeling, Characterization and Design", Destech
Publications, Incorporated, (2015).
[10] Lester, B VB., Vernon, HM., "Process of
manufacturing articles of thermoplastic synthetic resins",
US2234993, (1941).
[11] Hao, C., Wang, K., Wang, Z., Duan, R., Liu, H.,
Huang, M., et al., "Triple one-way and two-way shape
memory poly(ethylene-co-vinyl acetate)/poly(ε-
caprolactone) immiscible blends", Journal of Applied
Polymer Science, Vol. 139, No. 1, pp. 51426, (2022).
[12] Roudbarian, N., Baniasadi, M., Ansari, M., Baghani,
M., "An experimental investigation on structural design
of shape memory polymers", Smart Materials and
Structures, Vol. 28, No. 9, pp. 095017, (2019).
[13] Jeewantha, LHJ., Islam, MM., Epaarachchi, JA.,
editors., "Development of Smart Materials for Invasive
Medical Applications Using Shape Memory Polymers",
6th International Conference on Mechanical, Industrial
and Energy Engineering (ICMIEE 2020), Khulna
University of Engineering & Technology. (2020)
[14] Akbari-Azar, S., Baghani, M., Zakerzadeh, M-R.,
Shahsavari, H., Sohrabpour, S., "Analytical investigation
of composite sandwich beams filled with shape memory
polymer corrugated core", Meccanica, Vol. 54, No. 10,
pp. 1647-61, (2019).
[15] Xin, X., Liu, L., Liu, Y., Leng, J., "Mechanical
Models, Structures, and Applications of Shape-Memory
Polymers and Their Composites", Acta Mechanica
Solida Sinica, Vol. 32, No. 5, pp. 535-65, (2019).
[16] Barot, G., Rao, IJ., Rajagopal, KR., "A
thermodynamic framework for the modeling of
crystallizable shape memory polymers", International
Journal of Engineering Science, Vol. 46, No. 4, pp. 325-
51, (2008).
[17] Khakzad Esfahlan, F., Smart Polymers: "Shape
Memory and Electroactive Polymers. II", Iran Polymer
and Petrochemical Institute, Vol. 2, No. 4, pp. 37-48,
(2013).
[18] Yousefi, Sh., Bagheri, M., "Fundamentals of
Molecular Design and Preparation of Temperaturesensitive
Shape Memory Polymers: A Review",
Polymerization, Vol. 7, No. 3, pp. 86-97, (2017).
[19] Abidaryan, S., Behravesh, A. H., "Effect of Infill
Percentage and Raster Angle in Fused Deposition
Modeling (FDM) Process on Shape Memory Properties
of Poly (lactic acid) and Comparison with Compression
Molding", Iranian Manufacturing Engineering
Association, Vol.7, No. 5, pp. 14-23, (2020). (in
Persian (فارسی
[20] Ansari, M., Golzar, M., Baghani, M.,
Abbasishirsavar, M., Taghavimehr, M., "Force recovery
evaluation of thermo-induced shape-memory polymer
stent: material, process and thermo-viscoelastic
characterization", Smart Materials and Structures, Vol.
28, No. 9, pp. 095022, (2019).
[21] Ansari, M., Golzar, M., Baghani, M., Soleimani, M.,
"Shape memory characterization of poly(ε-caprolactone)
(PCL)/polyurethane (PU) in combined torsion tension
loading with potential applications in cardiovascular
stent", Polymer Testing, Vol. 68, pp. 424 32, (2018).
[22] Lei, M., Chen, Z., Lu, H., Yu, K., "Recent progress
in shape memory polymer composites: methods,
properties, applications and prospects", Nanotechnology
Reviews, Vol. 8, No. 1, pp. 327-351, (2019).
[23] Hosseinzadeh, M., Ghoreishi, M., Narooei, K., "An
investigation into the effect of thermal variables on the
3D printed shape memory polymer structures with
different geometries", Journal of Intelligent Material
Systems and Structures, 1045389X211028286, (2021).
[24] Boumezgane, O., Messori, M., "Poly(ethylene
glycol)-based shape-memory polymers", International
Journal of Polymer Analysis and Characterization, Vol.
22, No. 5, pp. 463-71, (2017).
[25] Hsieh, C-H., Mohd Razali, NA., Lin, W-C., Yu, ZW.,
Istiqomah, D., Kotsuchibashi, Y., et al.,
"Development of Thermo-Responsive
Polycaprolactone–Polydimethylsiloxane Shrinkable
Nanofibre Mesh", Nanomaterials, Vol. 10, No. 7, (2020).
[26] Ansari, M., Golzar, M., Baghani, M.,
Abbasishirsavar, M., Taghavimehr, M., "Force recovery
evaluation of thermo-induced shape-memory polymer
stent: material, process and thermo-viscoelastic
characterization", Smart Materials and Structures, Vol.
28, No. 9, pp. 095022, (2019).
[27] Liu, Y.-F., Wu, J.-L., Zhang, J.-X., Peng, W.,
"Feasible Evaluation of the Thermo-mechanical
Properties of Shape Memory Polyurethane for
Orthodontic Archwire", Journal of Medical and
Biological Engineering, Vol. 37, No. 5, pp. 666-674,
(2017).
[28] Liu, Y., et al., "Shape memory behavior and
recovery force of 4D printed laminated Miura-origami
structures subjected to compressive loading",
Composites Part B: Engineering, Vol. 153, pp. 233-242,
(2018).
[29] X. Lan et al., "World’s first spaceflight on-orbit
demonstration of a flexible solar array system based on
shape memory polymer composites", Science China
Technological Sciences, vol. 63, no. 8, pp. 1436-1451,
2020/08/01 2020.
[30] Doddamani, M., "Dynamic mechanical analysis of
3D printed eco-friendly lightweight composite",
Composites Communications, Vol. 19, pp. 177-181,
(2020).
[31] Menard, KP., Menard, NR., "Dynamic mechanical
analysis", CRC press, (2020).
[32] Liu, Y., Zhang, W., Zhang, F., Lan, X., Leng, J.,
Liu, S., et al., "Shape memory behavior and recovery
force of 4D printed laminated Miura-origami structures
subjected to compressive loading", Composites Part B:
Engineering, Vol. 153, pp. 233-42, ( 2018).
[33] Liu, R., Li, Y., Liu, Z., "Experimental study of
thermo-mechanical behavior of a thermosetting shapememory
polymer", Mechanics of Time-Dependent
Materials, Vol. 23, No. 3, pp. 249-66, (2019).
[34] Choong, YYC., Maleksaeedi, S., Eng, H., Yu, S.,
Wei, J., Su, P-C., "High speed 4D printing of shape
memory polymers with nanosilica", Applied Materials
Today, Vol. 18, pp. 100515, (2020).
[35] Swamy, MR., Mallik, U., Udayakumar, V., editors.,
"Synthesis and characterzation of graphite based shape
memory polymers", IOP Conference Series: Materials
Science and Engineering,: IOP Publishing, (2021).
[36] G. Le Fer and M. L. Becker, "4D Printing of
Resorbable Complex Shape-Memory Poly(propylene
fumarate) Star Scaffolds", ACS Applied Materials &
Interfaces, vol. 12, no. 20, pp. 22444-22452, 2020/05/20
2020.
[37] C. Lin, L. Zhang, Y. Liu, L. Liu, and J. Leng, "4D
printing of personalized shape memory polymer vascular
stents with negative Poisson’s ratio structure: A
preliminary study", Science China Technological
Sciences, vol. 63, no. 4, pp. 578-588, 2020/04/01 2020.
[38] Q. Zhao, J. Wang, H. Cui, H. Chen, Y. Wang, and
X. Du, "Programmed shape‐ morphing scaffolds
enabling facile 3D endothelialization," Advanced
Functional Materials, vol. 28, no. 29, p. 1801027, 2018.
[39] Y. S. Wong et al., "Bioabsorbable radiopaque waterresponsive
shape memory embolization plug for
temporary vascular occlusion," Biomaterials, vol. 102,
pp. 98-106, 2016.
[40] Alamdarnejad, G., Kokabi, M., Akbari, R., "Shape
memory behavior of amorphous polymeric
nanocomposites at small deformation", Mechanics of
Advanced Materials and Structures, pp. 1-14, (2021).
[41] Huang, R., Zheng, S., Liu, Z., Ng, TY., "Recent
advances of the constitutive models of smart materials—
Hydrogels and shape memory polymers", International
Journal of Applied Mechanics, Vol. 12, No. 02, pp.
2050014, (2020).
[42] Li, Y., Guo, S., He, Y., Liu, Z., "A simplified
constitutive model for predicting shape memory
polymers deformation behavior", International Journal
of Computational Materials Science and Engineering,
Vol. 4, No. 1, (2015).
[43] Liu, Y., Gall, K., Dunn, M., Greenberg, A., Diani,
J., "Thermomechanics of shape memory polymers:
Uniaxial experiments and constitutive modeling",
International Journal of Plasticity, Vol. 22, pp. 279-313
(2006).
[44] Li, Y., Liu, Z., "A novel constitutive model of shape
memory polymers combining phase transition and
viscoelasticity", Polymer, Vol. 143, pp. 298-308 (2018).
[45] Baniasadi, M., Maleki-Bigdeli, M-A., Baghani, M.,
"Force and multiple-shape-recovery in shape-memorypolymers
under finite deformation torsion-extension",
Smart Materials and Structures, Vol. 29, No. 5, pp.
055011, (2020).
[46] Moon, S., Cui, F., Rao, IJ., "Constitutive modeling
of the mechanics associated with triple shape memory
polymers", International Journal of Engineering
Science, Vol. 96, pp. 86-110, (2015).
[47] Li, X., Zhu, Y., Dong, Y., Liu, M., Ni, Q., Fu, Y.,
"Epoxy Resin Composite Bilayers with Triple-Shape
Memory Effect", Journal of Nanomaterials, pp. 1-8,
(2015).
[48] Zhang, J., Jiang, G., Huang, T., "Synthesis and
analysis of two-way-reversible shape-memory
polymers", Functional Materials Letters, Vol. 11, No.
03, pp. 1850047, (2018).
[49] Wang, K., Jia, Y-G., Zhao, C., Zhu, XX., "Multiple
and two-way reversible shape memory polymers: Design
strategies and applications", Progress in Materials
Science, Vol. 105, pp. 100572, (2019).
[50] Chen, S., Hu, J., Zhuo, H., Zhu, Y., "Two-way shape
memory effect in polymer laminates", Materials Letters,
Vol. 62, No. 25, pp. 4088-90, (2008).
[51] Tarng, W., Chen, C-J., Lee, C-Y., Lin, C-M., Lin,
Y-J., 'Application of Virtual Reality for Learning the
Material Properties of Shape Memory Alloys', Applied
Sciences, Vol. 9, No. 3, pp. 580, (2019).
[52] Scalet, G., "Two-Way and Multiple-Way Shape
Memory Polymers for Soft Robotics: An Overview",
Actuators, Vol. 9, No. 1, (2020).
[53] Wang, T., Liu, Y., Zhao, J., Zhang, H., Zhang, Z.,
"A facile approach to fabricate two-way shape memory
polyurethane with large reversible strain and high shape
stability", Smart Materials and Structures, 2020ol. 29,
No. 5, pp. 055033, (2020).
[54] Jin B, Song H, Jiang R, Song J, Zhao Q, Xie T.
"Programming a crystalline shape memory polymer
network with thermo- and photo-reversible bonds toward
a single-component soft robot", Science Advances,
2018;,4(1):eaao3865.
[55] El-Atab N, Mishra RB, Al-Modaf F, Joharji L,
Alsharif AA, Alamoudi H, et al., "Soft Actuators for Soft
Robotic Applications: A Review". Advanced Intelligent
Systems. 2020;2(10):2000128.
[56] D. Schönfeld, D. Chalissery, F. Wenz, M. Specht, C.
Eberl, and T. Pretsch, "Actuating Shape Memory
Polymer for Thermoresponsive Soft Robotic Gripper and
Programmable Materials," Molecules, vol. 26, p. 522,
01/20 2021.
[57] K. H. Cho et al., "A robotic finger driven by twisted
and coiled polymer actuator," in Electroactive Polymer
Actuators and Devices (EAPAD) 2016, 2016, vol. 9798,
p. 97981J: International Society for Optics and
Photonics.