مروری بر روش‌های تجربی مورد استفاده در محاسبة هدایت حرارتی نانوسیالات در دهة اخیر

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشیار دانشکدة مهندسی مکانیک، دانشگاه کاشان، کاشان

2 دانشجوی دکتری مهندسی مکانیک، دانشگاه کاشان، کاشان

چکیده

افزایش نرخ انتقال حرارت و کارآیی حرارتی از مسائل مهم سالیان اخیر است. یکی از روش‌های غیرفعال افزایش انتقال حرارت، استفاده از نانوسیالات است. تعیین هدایت حرارتی نانوسیالات و میزان افزایش نرخ انتقال حرارت با استفاده از نانوسیالات، یکی از مباحث چالش‌برانگیز در استفاده از نانوسیالات است. در این مقاله، به بررسی روش‌های تجربی مورد استفاده در تعیین هدایت حرارتی نانوسیالات در دهة اخیر پرداخته شده است. به‌طور کلی، روش‌های تجربی را می‌توان به دو دستة روش‌های نوری و غیرنوری دسته‌بندی کرد. برای روش‌های نوری 7 روش و برای روش‌های غیرنوری 14 روش گزارش شده است. روش‌های نوری، روش‌هایی غیرتهاجمی‌اند و نسبت به روش‌های غیرنوری قدمت کمتر و دقت بالاتری دارند. روش‌های غیرنوری امکانات آزمایشگاهی ساده‌تری دارند و نسبت به روش‌های نوری پرکاربرترند. در میان تمامی روش‌ها، روش سیم داغ گذرا ساده‌ترین و پرکاربردترین روش است.

کلیدواژه‌ها


[1] G. M. Paul, I. Chopkar, P. K. Manna, Techniques for measuring the thermal conductivity of nanofluids: A review, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 1913–1924, 2010.

[2] X. Q. Wang, A. S. Mujumdar. A Review on nanofluids-Part II: Experiments and applications, Brazilian Journal of Chemical Engineering, Vol. 25, No. 4, pp.631-648, 2008.

[3] X. Q. Wang, A. S. Mujumdar. Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, Vol. 46, pp.1-19, 2007.

[4] S. O. Zerinc, S. Kakac, A. G. Yazıcıog, Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluid Nanofluid, Vol. 8, pp.145-170, 2010.

[5] J. Fan, L. Wang, Review of Heat Conduction in Nanofluids, Journal of Heat Transfer, Vol. 133, pp. 040801-1-14, 2011.

[6] S. A. Angayarkanni, J. Philip, Review on Thermal Properties of Nanofluids: Recent Developments, Advances in Colloid and Interface Science, Vol. 225, pp.146-176, 2015.

[7] S. M. S. Murshed, K. C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids-A critical review, Applied Thermal Engineering, Vol. 28, pp.2109-2125, 2008.

[8] E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, PHYSICAL REVIEW, Vol. 76, pp.061203-1-16, 2007.

[9] M. P. Beck, Y. Yuan, P. Warrier, A. S. Teja, The effect of particle size on the thermal conductivity of alumina nanofluids, Journal of Nanoparticle Research, Vol. 11, pp.1129-1136, 2009.

[10] Y. Ding, H. Alias, D. Wen, R. A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 2006, pp .240-250, 49.

[11] H. T. Zhu, C. Y. Zhang, Y. M. Tang, J. X. Wang, Novel Synthesis and Thermal Conductivity of CuONanofluid, J. Phys. Chem. C, Vol. 111, pp. 1646-1650, 2007.

[12] K. S. Hong, T. K. Hong, H. S. Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles”. APPLIED PHYSICS LETTERS, 88, 2006, PP.031901 -1-3.

[13] Y. Y. He, H. Jin, Y. Chen, D. Ding, H. Cang, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer, Vol. 50, pp. 2272–2281, 2007.

[14] Y. Feng, A New Thermal Conductivity Model for Nanofluids with Convection Heat Transfer Application, thesis submitted to the Graduate Faculty of North Carolina State University for the degree of Master of Science, 2010.

[15] M. S. Murshed, K. C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, Vol. 47, pp. 560-568, 2008.

[16] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, M. M. Pi ˜neiro, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids, Fluid Phase Equilibria, Vol. 337, pp. 119-124, 2013.

[17] Ch. Pang, J. Y. Jung, J. W. Lee, Y. T. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, International Journal of Heat and Mass Transfer, Vol. 55, pp.5597–5602, 2012.

[18] M. Xinga, J. Yu, R. Wang, Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, International Journal of Heat and Mass Transfer, Vol. 88, pp.609–616, 2015.

[19] M. H. Esfe, A. A. A. Arani, M. Rezaie, W. M. Yan, A. Karimipour, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid, International Communications in Heat and Mass Transfer, Vol. 66, pp.189-195, 2015.

[20] W. Duangthongsuk, S. Wongwises, Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance, Experimental Thermal and Fluid Science, Vol. 34, pp.616–624, 2010.

[21] X. Wei, H. Zhu, T. Kong, L. Wang, Synthesis and thermal conductivity of Cu2O nanofluids, International Journal of Heat and Mass Transfer, 52, 2009, PP.4371–4374.

[22] M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions, International Journal of Thermophysics, Vol. 18, No. 2, pp.327-338, 1997.

[23] P. L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, A Two-Dimensional Analytical Solution for the Transient Short-Hot-Wire Method, Int J Thermophys, Vol. 29, pp.29:1278-1298, 2008.

[24] X. Zhang, M. Fujii, Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method, International Journal of Thermophysics, Vol. 21, No. 1, pp. 71-83, 2000.

[25] H. Wicaksono, X, Zhang, S. Fujiwara, M. Fujii, Measurements of Thermal Conductivity and Thermal Diffusivity of Molten Carbonates, The reports of Institute of Advanced Material Study Kyushu University, Vol. 15, No. 2, pp.165-168, 2001.

[26] H. Xie, H. Gu, M. Fujii, X. Zhang, Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials, Measutment Science And Technology, Vol. 17, pp. 208-214, 2006.

[27] X. Zhang, H. Gu, M. Fujii, Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids, International Journal of Thermophysics, Vol. 27, No. 2, pp. 569-580, 2006.

[28] S. K. Babu, K. S. Praveen, B. Raja, P. Damodharan, Measurement of thermal conductivity of fluid using single and dual wire transient techniques, Measurement, Vol. 46, pp. 2746-2752, 2013.

[29] M. J. Assael, K. D. Antoniadis, D. Tzetzis, The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes, Composites Science and Technology, Vol. 68, pp.3178-3183, 2008.

[30] P. Bhattacharya, S. Nara, p. Vijayan, T. Tang, W. Lai, P. E. Phelan, R. S. Prasher, D. W. Song, J. Wang, Characterization of the temperature oscillation technique to measure the thermal conductivity of fluids, International Journal of Heat and Mass Transfer, Vol. 49, pp.2950-2956, 2006.

[31] E. E. T. Patel, S. K. Sundararajan, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluidsm, Journal of Nanoparticle Research, Vol. 12, No. 3, pp.1015-1031, 2010.

[32] B. X. Wang, L. P. Zhou, X. F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer, Vol. 46, pp.2665-2672, 2003.

[33] A. R. Challoner, R. W. Powell, Thermal Conductivities of Liquids-New Determinations for Seven Liquids and Appraisal of Existing Values, proceedings of the Royal Society of London, Series A 238 (1212), pp. 90-106, 1956.

[34] X. Wang, X. Xu, S. U. S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, Vol. 13, No. 4, pp. 474-480, 1999.

[35] K. Sinha, B. Kavlicoglu, Y. Liu, F. Gordaninejad, O. A. Graeve, A comparative study of thermal behavior of iron and copper nanofluids, JOURNAL OF APPLIED PHYSICS, Vol. 106, pp. 064307 -1-7, 2009.

[36] N. Shalkevich, W. Escher, Th. Burgi, B. Michel, L. S. Ahmed, D. Poulikakos, On the Thermal Conductivity of Gold Nanoparticle Colloids, Langmuir, Vol. 26, No. 2, pp. 663–670, 2010.

[37] C. Dames, G. Chen, 1ω, 2ω & 3ω methods for measurements of thermal properties, REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 76, pp. 124902-1-14, 2005.

[38] E. Yusibani, P. L. Woodfield, M. Fujii, K. Shinzato, X. Zhang, Y. Takata, Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas, Int J Thermophys, Vol. 30, pp. 397–415, 2009.

[39] H. Wang, M. Sen, Analysis of the 3-omega method for thermal conductivity measurement, International Journal of Heat and Mass Transfer, Vol. 52, pp. 2102-2109, 2009.

[40] K. T. Wojciechowski, R. Zybala, R. Mania, Application of DLC layers in 3-omega thermal conductivity method, Journal of Achievements in Materialsand Manufacturing Engineering, Vol. 37, No. 2, pp. 512-517, 2009.

[41] R. Karthik, R. Harish Nagarajan, B. Raja, P. Damodharan, Thermal conductivity of CuO–DI water nanofluids using 3-x measurement technique in a suspended micro-wire, Experimental Thermal and Fluid Science, Vol. 40, pp. 1-9, 2012.

[42] I. Tavman, A. Turgut, an Investigation on Thermal Conductivity and Viscosity of Water Based Nanofluids Microfluidics Based Microsystems, NATO Science for Peace and Security Series A: Chemistry and Biology, pp. 139-162, 2010.

[43] A. Turgut, I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, S. Tavman, Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids, Int J Thermophys, Vol. 30, pp. 1213-1226, 2009.

[44] Z. L. Wang, D. W. Tang, S. Liu, X. H. Zheng, N. Araki, Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport, Int J Thermophys, Vol. 28, pp. 1255-1268, 2007.

[45] R. W. Powell, Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits, JOURNAL OF SCIENTIFIC INSTRUMENTS, Vol. 34, pp. 485-492, 1957.

[46] R. Nottenburg, K. Rajeshwar, R. Rosenvold, J. D. Bow, Measurement of thermal conductivity of Green River oil shales by a thermal comparator technique, FUEL, Vol. 57, pp. 789-795, 1978.

[47] W. T. Clark, R. W. Powell, Measurement of thermal conduction by the thermal comparator, J. SCI. INSTRUM, Vol. 39, pp. 545-551, 1962.

[48] A. S. Iyengar, A. R. Abramson, Comparative Radial Heat Flow Method for Thermal Conductivity Measurement of Liquids, Journal of Heat Transfer, pp. 064502-1-3, 2009.

[49] M. S. Chopkar, P. K. Sudarshan, I. Manna, Effect of Particle Size on Thermal Conductivity of Nanofluid, Metallurgical and Materials Transactions A, Vol. 39, No. 7, pp. 1535-1542, 2008,.

[50] H. Kurt, M. Kayfeci, Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks, Applied Energy, Vol. 86, pp. 2244-2248, 2009.

[51] L. Broniarz-Press, K. Pralat, K. W. Pyc, Experimental Analysis of Thermal Conductivity of Carboxymethylcellulose Sodium Salt Aqueous Solutions in Coaxial Cylinder System, Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, September, pp. 16-20, 2007.

[52] A. Amrollahi, A. A. Hamidi, A. M. Rashidi, The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid), Nanotechnology, Vol. 19, pp. 315701-1-8, 2008.

[53] B. Barbe´s, R. Pa´ramo, E. Blanco, M. J. Pastoriza-Gallego, M. M. Pineiro, J. L. Legido, C. Casanova, Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids, J Therm Anal Calorim, Vol. 111, pp. 1615-1625, 2013.

[54] J. Glory, M. Bonetti, M. Helezen, M. Mayne-L’Hermite, C. Reynaud, Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes, JOURNAL OF APPLIED PHYSICS, Vol. 103, pp. 094309-1-7, 2008.

[55] R. J. Warzoha, A. S. Fleischer, Determining the thermal conductivity of liquids using the transient hot disk method. Part I: Establishing transient thermal-fluid constraints, International Journal of Heat and Mass Transfer, Vol. 71, pp. 779-789, 2014.

[56] R. J. Warzoha, A. S. Fleischer, Determining the thermal conductivity of liquids using the transient hot disk method. Part II: Establishing an accurate and repeatable experimental methodology, International Journal of Heat and Mass Transfer, Vol. 71, pp. 790–807, 2014.

[57] M. Wan, R. R. Yadav, K. L. Yadav, S. B. Yadaw, Synthesis and experimental investigation on thermal conductivity of nanofluids containing functionalized Polyanilinenanofibers, Experimental Thermal and Fluid Science, Vol. 41, pp. 158-164, 2012.

[58] B. Buonomo, L. Colla, L. Fedele, O. Manca, L. Marinelli, A comparison of nanofluid thermal conductivity measurements by flash and hot disk techniques, Journal of Physics: Conference Series, Vol. 547, pp. 012046-1-10, 2014.

[59] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Current Applied Physics, Vol. 9, pp. 131–139, 2009.

[60] W. Jiang, G. Ding, H. Peng, Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants, International Journal of Thermal Sciences, Vol. 48, pp. 1108-1115, 2009.

[61] F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of grapheme, Nanoscale Research Letters, Vol. 7, pp. 314-1-7, 2012.

[62] P. Hu, W. L. Shan, F. Yu. Z. S. Chen, Thermal Conductivity of AlN–Ethanol Nanofluids, Int J Thermophys, Vol. 29, pp. 1968–1973, 2008.

[63] B. Wright, D. Thomas, H. Hong, L. Groven, J. Puszynski, E. Duke, X. Ye, S. Jin, Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes, APPLIED PHYSICS LETTERS, Vol. 91, pp. 173116-1-3, 2007.

[64] R. S. Vajjha, D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, International Journal of Heat and Mass Transfer, Vol. 52, pp. 4675–4682, 2009.

[65] L. S. Sundar, M. H. Farooky, S. N. Sarada, M. K. Singh, Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuOnanofluids, International Communications in Heat and Mass Transfer, Vol. 41, pp. 41-46, 2013.

[66] M. C. S. Reddy, V. V. Rao, Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids, International Communications in Heat and Mass Transfer, Vol. 46, pp. 31-36, 2013.

[67] C. H. Li, W. Williams, J. Buongiorno, L. W. HU, G. P. Peterson, Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids, Journal of Heat Transfer, Vol. 130, pp. 042407-1-7, 2008.

[68] C. H. Li, G. P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), JOURNAL OF APPLIED PHYSICS, Vol. 99, pp. 084314-1-8, 2006.

[69] C. H. Li, G. P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, JOURNAL OF APPLIED PHYSICS, Vol. 101, pp. 044312-1-5, 2007.

[70] B. Kolade, K. E. Goodson, J. K. Eaton, Convective performance of nanofluids in a laminar thermally developing tube flow, Journal of Heat Transfer, Vol. 131, pp. 052402-1-052402-8, 2009.

[71] G. V. Casquillas, M. L. Berre, C. Peroz, Y. Chen, J. J. Greffet, Microlitre hot strip devices for thermal characterization of nanofluids, Microelectronic Engineering, Vol. 84, pp. 1194-1197, 2007.

[72] Y. S. Yu, J. Kim, M. T. Hung, Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles, Journal of Heat Transfer, Vol. 130, pp. 092403-1-6, 2008.

[73] A. Ehle, S. Feja, M. H. Buschmann, Temperature Dependency of Ceramic Nanofluids Shows Classical Behavior, JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, Vol. 25, No. 3, pp. 378-385, 2011.

[74] M. H. Buschmann, Thermal conductivity and heat transfer of ceramic nanofluids, International Journal of Thermal Sciences, Vol. 62, pp. 19-28, 2012.

[75]W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, Journal of Applied Physics, Vol. 32, No. 9, pp. 1679-1684, 1961.

[76] I. Tawman, Flash method of measuring thermal diffusivity and conductivity, Convective Heat and Mass Transfer in Porous Media, Vol. 196, pp. 923-936, 1991.

[77] J. Blumm, A. Lindemann, S. Min, Thermal characterization of liquids and pastes using the flash technique, Thermochimica Acta, Vol. 445, pp. 26-29, 2007.

[78] N. W. P. May, C. V. Pinzón, A. V. Flick, Á. Cifuentes, A. Oleaga, A. Salazar, J. J. A. Gil, Study of the thermal properties of polyester composites loaded with oriented carbon nanofibers using the front-face flash method, Polymer Testing, Vol. 50, pp. 255-261, 2016.

[79] B. Buonomo, O. Manca, L. Marinelli, S. Nardini, Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method, Applied Thermal Engineering, Vol. 91, pp. 181-190, 2015.

[80] S. Shaikh, K. Lafdi, R. Ponnappan, Thermal conductivity improvement in carbon nanoparticle doped PAO oil: An experimental study, Journal of Applied Physics, Vol. 101, pp. 064302-1-7, 2007.

[81] F. M. Ali, W. M. M. Yunus, M. M. Moksin, Z. A. Talib, The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: Numerical and experimental, REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 81, pp. 074901-1-9, 2010.

[82] A. J. Schmidt, M. Chiesa, D. H. Torchinsky, J. A. Johnson, K. A. Nelson, G. Chen, Thermal conductivity of nanoparticle suspensions in insulating media measured with a transient optical grating and a hotwire, Journal of Applied Physics, Vol. 103, pp. 083529-1-5, 2008.

[83] S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, R. G. Shimmin, Thermal conductivity of nanoparticle suspensions, Journal of Applied Physics, Vol. 99, pp. 084308-1-6, 2006.

[84] R. Rusconi, E. Rodari, R. Piazza, Optical measurements of the thermal properties of nanofluids, Applied Physics Letters, Vol. 89, pp. 261916-1-3, 2006.

[85] J. D. Schieber, D. C. Venerus, K. Bush, V. Balasubramanian, S. Smoukov, Measurement of anisotropic energy transport in flowing polymers by using a holographic technique, PNAS, Vol. 101, No. 36, pp. 13142–13146, 2004.

[86] F. Rondino, R. D’Amato, G. Terranova, E. Borsella, M. Falconieri, Thermal diffusivity enhancement in nanofluids based on pyrolytic Titania nanopowders: importance of aggregate morphology, J. Raman Spectrosc., Vol. 45, pp. 528-532, 2014.

[87] D. C. Venerus, J. D. Schieber, V. Balasubramanian, K. Bush, S. Smoukov, Anisotropic thermal conduction in a polymer liquid subjected to shear flow, Physical review letters, Vol. 93, No. 9, p. 098301, 2004.

[88] D. C. Venerus, M. S. Kabadi, S. Lee, V. P.Luna, Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering, JOURNAL OF APPLIED PHYSICS, Vol. 100, pp. 094310-1-5, 2006.

[89] S. Soltaninejad, M. S. Husin, A. R. Sadrolhosseini, R. Zamiri, A. Zakaria, Thermal diffusivity measurement of Au nanofluids of very low concentration by using photoflash technique, Measurement, Vol. 46, pp. 4321-4327, 2013.