رویکرد‌های ساخت ایمپلنت‌های استخوانی برپایه فوم تیتانیومی

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

2 استادیار، گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

چکیده

ساختارهای متخلخل از جنس تیتانیوم علاوه بر خواص جالب توجه این فلز به دلیل فراهم ساختن مدول الاستیک پایین‌تر نسبت به سایر زیست‌فلزات، کاهش چشمگیر پدیده محافظت تنشی و برقراری پیوند مناسب با استخوان بسیار مورد توجه قرار گرفته اند. باتوجه به اینکه کارایی ایمپلنت‌های متخلخل علاوه بر نوع آلیاژ، تابع ویژگی‌های ریزساختاری قطعه؛ همانند اندازه حفرات، شکل سلول‌ها، ضخامت دیواره، توزیع حفرات و چگالی قطعه است، لذا با انتخاب روش ساخت مناسب و کنترل پارامترهای آن می‌توان به ساختاری بهینه از نظر مطابقت مدول الاستیک ایمپلنت با استخوان و نفوذپذیری مناسب برای رشد سلول‌های استخوانی دست یافت. با توجه به تأثیرپذیری شدید خواص نهایی ایمپلنت از روش ساخت؛ در مقاله علمی-ترویجی حاضر، خواص مکانیکی حاصل از روش‌های متفاوت ساخت ایمپلنت‌های تیتانیومی متخلخل گردآوری شده و مورد ارزیابی قرار گرفته است. در بین روش‌های متفاوت ساخت، روش‌هایی چون ساخت افزایشی، تف‌جوشی جرقه پلاسما و قالب‌گیری تزریقی فلزات، با انعطاف‌پذیری بالای خود امکان تولید ساختارهای متخلخل همراه با خواص مکانیکی مناسب را فراهم می‌نمایند. هرچند به‌نظر می‌رسد هزینه بالای روش‌های ساخت افزایشی در مقایسه با دو روش دیگر، چالشی در برابر تجاری شدن این روش جهت ساخت قطعات متخلخل تیتانیومی باشد.

کلیدواژه‌ها

موضوعات


[1] Neirinck, Bram, Mattheys, Tina, Braem, Annabel, Fransaer, Jan, Van der Biest, Omer, and Vleugels, Jef. Preparation of titanium foams by slip casting of particle stabilized emulsions. Advanced Engineering Materials, 11(8):633–636, 2009.
[2] Wieding, Jan, Jonitz, Anika, and Bader, Rainer. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials, 5(8):1336–1347, 2012.
[3] Dezfuli, S Naddaf, Sadrnezhaad, SK, Shokrgozar, MA, and Bonakdar, S. Fabrication of biocompatible titanium scaffolds using space holder technique. Journal of materials science: materials in medicine, 23(10):2483–2488, 2012.
[4] Sola, Antonella, Bellucci, Devis, and Cannillo, Valeria. Functionally graded materials for orthopedic applications–an update on design and manufacturing. Biotechnology advances, 34(5):504–531, 2016.
[5] Singh, R, Lee, PD, Dashwood, RJ, and Lindley, TC. Titanium foams for biomedical applications: a review. Materials Technology, 25(3-4):127–136, 2010.
[6] Azarniya, Abolfazl, Azarniya, Amir, Safavi, Mir Saman, Farshbaf Ahmadipour, Mohammad, Esmaeeli Seraji, Melica, Sovizi, Saeed, Saqaei, Mahboobe, Yamanoglu, Ridvan, Soltaninejad, Mohammad, Madaah Hosseini, Hamid Reza, et al. Physicomechanical properties of porous materials by spark plasma sintering. Critical Reviews in Solid State and Materials Sciences, 45(1):22–65, 2020.
[7] Ryan, Garrett and Pandit, Abhay. Dimitrios panagiotis apatsidis. fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27:2651–2670, 2006.
[8] Dutta, Bhaskar and Froes, Francis. Additive manufacturing of titanium alloys: state of the art, challenges and opportunities. Butterworth-Heinemann, 2016.
[9] Geetha, Manivasagam, Singh, Ashok K, Asokamani, Rajamanickam, and Gogia, Ashok K. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science, 54(3):397–425, 2009.
[10] Wang, Chunli, Chen, Hongjie, Zhu, Xiangdong, Xiao, Zhanwen, Zhang, Kai, and Zhang, Xingdong. An improved polymeric sponge replication method for biomedical porous titanium scaffolds. Materials Science and Engineering: C, 70:1192–1199, 2017.
[11] Jung, Hyun-Do, Yook, Se-Won, Kim, Hyoun-Ee, and Koh, Young-Hag. Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 17(63):1545–1547, 2009.
[12] Yan, Leiming, Wu, Jisi, Zhang, Lei, Liu, Xinli, Zhou, Kechao, and Su, Bo. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Materials Science and Engineering: C, 75:335–340, 2017.
[13] Wang, Yue-Qin, Jie, TAO, Zhang, Jin-Long, and Tao, WANG. Effects of addition of nh4hco3 on pore characteristics and compressive properties of porous ti-10% mg composites. Transactions of Nonferrous Metals Society of China, 21(5):1074–1079, 2011.
[14] Warnke, Patrick H, Douglas, Timothy, Wollny, Patrick, Sherry, Eugene, Steiner, Martin, Galonska, Sebastian, Becker, Stephan T, Springer, Ingo N, Wiltfang, Jörg, and Sivananthan, Sureshan. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue engineering part c: Methods, 15(2):115–124, 2009.
[15] Froes, Francis and Qian, Ma. Titanium in Medical and Dental Applications. Woodhead Publishing, 2018.
[16] Zhang, Z, Jones, D, Yue, S, Lee, PD, Jones, JR, Sutcliffe, CJ, and Jones, E. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Materials Science and Engineering: C, 33(7):4055–4062, 2013.
[17] Ngo, Tuan D., Kashani, Alireza, Imbalzano, Gabriele, Nguyen, Kate T.Q., and Hui, David. Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172 – 196, 2018.
[18] Choy, Sing Ying, Sun, Chen-Nan, Leong, Kah Fai, and Wei, Jun. Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials & Design, 131:112 – 120, 2017.
[19] Shahali, Hesam, Jaggessar, Alka, and Yarlagadda, Prasad KDV. Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Engineering, 174:1067–1076, 2017. 13th Global Congress on Manufacturing and Management Zhengzhou, China 28-30 November, 2016.
[20] Dunand, David. Processing of titanium foams. Advanced Engineering Materials, 6:369 – 376, 06 2004.
[21] Li, Jessica and Dunand, David. Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia - ACTA MATER, 59:146–158, 01 2011.
[22] Chen, Zhuyin, Liu, Xinli, Shen, Ting, Wu, Chuanzong, and Zhang, Lei. Template-assisted freeze casting of macroporous ti6al4v scaffolds with longrange order lamellar structure. Materials Letters, 264:127374, 04 2020.
[23] Trueba, Paloma, Beltrán, Ana M., Bayo, José Manuel, Rodríguez-Ortiz, José Antonio, Larios, Diego F., Alonso, Esteban, Dunand, David C., and Torres, Yadir. Porous titanium cylinders obtained by the freeze-casting technique: Influence of process parameters on porosity and mechanical behavior. Metals, 10(2), 2020.
[24] Biasetto, Lisa, Guzi de Moraes, Elisangela, Colombo, Paolo, and Bonollo, Franco. Ovalbumin as foaming agent for ti6al4v foams produced by gelcasting. Journal of Alloys and Compounds, 687, 06 2016.
[25] Erk, Kendra, Dunand, David, and Shull, Kenneth. Titanium with controllable pore fractions by thermo reversible gelcasting of tih2. Acta Materialia, 56:5147–5157, 10 2008.
[26] Azir, Mohd, Harun, W.S.W, and Kadirgama, Kumaran. A mechanical property evaluation of ti6al4v cellular lattice structures fabricated by selective laser melting. IOP Conference Series: Materials Science and Engineering, 788:012010, 06 2020.
[27] Xu, Qian, Gabbitas, Brian, Matthews, Steven, and Zhang, Deliang. The development of porous titanium products using slip casting. Journal of Materials Processing Technology, 213:1440–1446, 08 2013.
[28] Xu, Qian, Gabbitas, Brian, and Matthews, Steven. Titanium compacts with controllable porosity by slip casting of binary powder mixtures. Powder Technology, 266:396–406, 11 2014.
[29] Torres, Y., Trueba, Paloma, Pavon Palacio, Juan, Chicardi, Ernesto, Kamm, Paul H., Garcأ a-Moreno, Francisco, and Rodriguez-Ortiz, JoseA. Design, processing and characterization of titanium with radial graded porosity for bone implants. Materials & design, 110, 07 2016.
[30] Su, Mingzhou, Wang, Huimeng, Zhou, Qiaoling, Chen, Chang, Liu, Kang, and Hao, Xiaodong. Relationship between porosity and spacer content of open cell metal foams. Transactions of the Indian Institute of Metals, 73:1–7, 02 2020.
[31] Abhash, Amit, Singh, Pradeep, Muchhala, Dilip, Kumar, Rajeev, Gupta, Gaurav, and Mondal, DP. Research into the change of macrostructure, microstructure and compressive deformation response of ti6al2co foam with sintering temperatures and space holder contents. Materials Letters, 261:126997, 11 2019.
[32] Aldinger, Fritz, Claussen, Nils, Kaneno, Masayuki, Koumoto, Kunihito, Somiya, Shigeyuki, Spriggs, Richard M., and Uchino, Kenji. Preface to the first edition. in Somiya, Shigeyuki, ed. , Handbook of Advanced Ceramics (Second Edition), p. xi. Academic Press, Oxford, second edition ed. , 2013.
[33] Zhang, L., He, Zhengyuan, Tan, Jun, Calin, M., K G, Prashanth, Sarac, Baran, V., Bernhard, Jiang, Y.H., Zhou, Ray, and Eckert, J. Designing a multifunctional ti-2cu-4ca porous biomaterial with favorable mechanical properties and high bioactivity. Journal of Alloys and Compounds, 727, 08 2017.
[34] Makena, Isaac, Shongwe, Mxolisi, Machaka, Ronald, and Masete, Mosimanegape. Effect of spark plasma sintering temperature on the pore characteristics, porosity and compression strength of porous titanium foams. SN Applied Sciences, 2, 04 2020.
[35] Makena, Isaac, Shongwe, Mxolisi, Machaka, Ronald, and Matizamhuka, Wallace. Influence of spark plasma sintering temperature on porous titanium microstructural integrity, airflow resistance, and space holder removal. The International Journal of Advanced Manufacturing Technology, 104, 10 2019.
[36] Lascano, Sheila, Arevalo, C., MontealegreMelendez, Isabel, Munoz, Sergio, Rodriguez-Ortiz, Jose A., Trueba, Paloma, and Torres, Y. Porous titanium for biomedical applications: Evaluation of the conventional powder metallurgy frontier and space-holder technique. Applied Sciences, 9:982, 03 2019.
[37] Dehghan-manshadi, Ali, Chen, Yunhui, Shi, Zhiming, Bermingham, M., StJohn, D, and Dargusch, M. Porous titanium scaffolds fabricated by metal injection moulding for biomedical applications. Materials, 11, 09 2018.
[38] Ramli, Mohd Ikram, Bakar, Abu, Muhamad, Norhamidi, Muchtar, Andanastuti, and Zakaria, Mohd Yusuf. Effect of sintering on the microstructure and mechanical properties of alloy titaniumwollastonite composite fabricated by powder injection moulding process. Ceramics International, 03 2019.
[39] Dehghan-Manshadi, A, StJohn, D, Dargusch, M, and Ma, Qian. Fabrication of highly porous titanium scaffolds using metal injection moulding and space holder. 03 2018.
[40] Shbeh, Mohammed, Wally, Zena, Elbadawi, Mohammed, Mosalagae, Mosalagae, Al-Alak, Hassan, Reilly, Gwendolen, and Goodall, Russell. Incorporation of ha into porous titanium to form ti-ha biocomposite foams. Journal of the Mechanical Behavior of Biomedical Materials, 96, 04 2019.
[41] Niinomi, Mitsuo and Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International journal of biomaterials, 2011:836587, 06 2011.
[42] Zhang, Xiangyu, Fang, Gang, Xing, Lei-Lei, Liu, Wei, and Zhou, J. Effect of porosity variation strategy on the performance of functionally graded ti-6al4v scaffolds for bone tissue engineering. Materials and Design, 157:523–538, 08 2018.
[43] Yan, Ming and Yu, Peng. An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V - Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder. 04 2015.
[44] Del Guercio, Giuseppe, Galati, Manuela, and Saboori, Abdollah. Innovative approach to evaluate the mechanical performance of ti6al4v lattice structures produced by electron beam melting process. Metals and Materials International, 05 2020.
[45] Wang, Q, Li, S, Hou, W, Wang, Shaogang, Hao, Y.L, Yang, R, and Misra, R.D.K. Mechanistic understanding of compression-compression fatigue behavior of functionally graded ti-6al-4v mesh structure fabricated by electron beam melting. Journal of the mechanical behavior of biomedical materials, 103:103590, 03 2020.
[46] Dizlek, M., Guden, Mustafa, Turkan, U., and Tasdemirci, Alper. Processing and compression testing of ti6al4v foams for biomedical applications. Journal of Materials Science, 44:1512–1519, 03 2009.
[47] Amin Yavari, Saber, Ahmadi, S.M., Pouran, Behdad, Schrooten, Jan, Weinans, Harrie, and Zadpoor, Amir. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 03 2015.
[48] Liu, Fei, Mao, Zhongfa, Zhang, Peng, Zhang, David, Jiang, Junjie, and Ma, Zhibo. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Materials & Design, 160, 10 2018.
[49] Taniguchi, Naoya, Fujibayashi, Shunsuke, Takemoto, Mitsuru, Sasaki, Kiyoyuki, Otsuki, Bungo, Nakamura, Takashi, Matsushita, Tomiharu, Kokubo, Tadashi, and Matsuda, Shuichi. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering: C, 59, 10 2015.
[50] Yu, Guisheng, Li, Zhibin, Li, Shuangjian, Zhang, Qiang, Hua, Youlu, Liu, Hui, Zhao, Xueyang, Dhaidhai, Denzel, Li, Wei, and Wang, Xiaojian. The select of internal architecture for porous ti alloy scaffold: A compromise between mechanical properties and permeability. Materials & Design, 192:108754, 04 2020.
[51] Cheng, X.Y., Li, S.J., Murr, Lawrence, Zhang, Zhenbo, Hao, Y.L, Yang, R, Medina, Francisco, and Wicker, R.B. Compression deformation behavior of ti-6a1-4v alloy with cellular structures fabricated by electron beam melting. Journal of the mechanical behavior of biomedical materials, 16, 10 2012.
[52] Surmeneva, M., Surmenev, Roman, Chudinova, Ekaterina, Koptyug, Andrey, Tkachev, Mikhail, Shkarina, Svetlana, and Rأ¤nnar, Lars-Erik. Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction. Materials & Design, 133, 07 2017.
[53] Yanez, Alejandro, Cuadrado, A., Martel, Oscar, Afonso, Horأ،cio, and Monopoli, Donato. Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction. Materials & Design, 140, 11 2017.