تحلیل ترمودینامیکی سیکل ترکیبی تولید هیدروژن هسته‌ای و محاسبة بازده سیکل

نوع مقاله : علمی ترویجی

نویسندگان

1 گروه مهندسی انرژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات

2 پژوهشگاه شیمی و مهندسی شیمی ایران

چکیده

در این مقاله سیکل ترکیبی تولید هیدروژن هسته‌ای با کوپلینگ و ترکیب دو سیکل متفاوت راکتور اتمی با خنک‌کنندة گازی HTGR و سیکل ترموشیمیایی کلر - مس معرفی و بررسی شده است. سپس، تحلیل ترمودینامیکی سیکل با کدنویسی اختصاصی در نرم‌افزار اییز[i] انجام شده است. نتایج حل تحلیلی و همزمان معادلات پایستگی جرم و انرژی بسیار امیدوارکننده بوده، به‌طوری‌که برای دمای متعارف مورد استفاده در راکتورهای دمابالا با خنک‌کنندة گازی؛ یعنی 900 درجة سانتی‌گراد راندمان مطلوب 5/36 درصد محاسبة شده است.



[i]. Engineering Equation Solver (EES)

کلیدواژه‌ها


 
[1] Veziroglu TN, Sahin S.21st century's energy: hydrogenenergy system. Energy Coversion and Management 2008;49(7): 1820-31.
[2] Dincer I.Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy research 2007;31:29-55
[3] Orhan MF, Dincer I, Rosen MA. Exergoeconomic analysis of a thermochemical copper-chlorine cycle for hydrogen production using specific exergy cost method. Thermochimica Acta;2008; doi:10.1016/j.tca.2009.08.008.
[4] Bose T, Malbrunot P. Hydrogen: facing the energy challenges of the 21st century. Paris: John Libbey Eurotext;2007.
[5] Rosen MA. Advances in hydrogen production by thermochemical water decomposition: A review. International Journal of Energy 2010;35:1068-76
[6] Kothari R, Buddhi D, SawhneyRL. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and sustainable Energy Reviews 2008:12:553-63
[7] Evan BCR, Allen RWK. A figure of merit assessment of the routes to hydrogen. International  Journal of Hydrogen Energy 2005;30:809-19
[8]Beghi GE. Adecade of research on thermochemical hydrogen at the joint  research center, ISPRA. International Journal of Hydrogen Energy1986;11(12):761-71
[9] Funk JE. Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy 2001:26(3):185-90
[10] Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Moller S. prospects of solar thermal hydrogen production processes. International Journal of Hydrogen Energy 2009;34:4256-67
[11] Balta MT, Dincer I, Hepbasli A. Thermodynamic assessment of  geothermal energy use in hydrogen production. International Journal of Hydrogen Energy 2009;34(7):2925-39
[12] Fletcher EA. Solar thermal processing: a review. Journal of Solar Energy  Engineering 2001;123:63-74
[13] Balta MT, Dincer I, Hepbasli A. Potential methods for geothermal-based hydrogen production. In: proceedings of the international conference on hydrogen production (ICH2P-09). May 03-06, 2009. Oshawa, Canada: University of Ontario Institute of Technology. P. 225-42[14] Balta MT, Dincer I, Hepbasli A. Geothermal-based hydrogen production using thermochemical and hybrid cycles: a review and analysis. International Journal of Hydrogen Energy.
[15] Bertel E, Nuclear energy- the hydrogen economy. Nucl Energy Agency News 2004;22:10-3
 [16] Duffey R, Green atoms. Power Energy 2005;2(2):8-12
[17] Marchetti C. Long term global vision of  nuclear-produced hydrogen. Int J Nucl Hydrogen Prod Appl 2006:1(1):13-9.
[18] Orhan MF, Dincer I, Rosen MA. The oxygen production step of a cooper-chlorine thermochemical water decomposition cycle for hydrogen production: energy and exergy analysis. Chemical Engineering Science 2009;64:860-9
[19] Orhan MF, Dincer I, Rosen MA. Energy and exergy analysis of the fludized bed of a copper-chlorine cycle for nuclear-based hydrogen production via thermochemical water decomposition. Chemical Engineerig Research and Design 2009;87:684-94
[20] Orhan MF, Dincer I, Rosen MA. Thermodynamic analysis of the copper production step in a  copper-chlorine cycle  for hydrogen production. Thermochimica Acta 2008;480:22-9
[21] Orhan MF, Dincer I, Rosen MA. Energy and exergy assessments of the hydrogen production step of a copper-chlorine thermochemical water splitting cycle driven by nuclear-based heat. International Journal of Hydrogen Energy 2008'33:6456-66
[22] Orhan MF, Dincer I, Rosen MA. Energy and exergy analysis of the drying step of a copper-chlorine thermochemical cycle for hydrogen production. International Journal of Exergy 2009,6(6):793-808
[23] Naterer GF, Gabriel K, Wang ZL,Daggupati VI, Gravelsins R. Thermochemical hydrogen production with a copper- chlorine cycle. I. Oxygen release from copper oxychloride decomposition. International Journal of Hydrogen Energy 2008:33:5439
[24] Lewis MA, Masin JG, O'Hare PA. Evaluation of alternative thermochemical cycles – part I. The methodology. International Journal of Hydrogen Energy 2009;34990:4115-24
[25] Lewis MA, Ferrandon Ms, Tatterson DF, Mathias P. Evaluation of alternative thermochemical cycle – part III further development of the Cu-Cl cycle. International Journal of Hydrogen Energy 2009;34(9):4136-45
[26] Balta MT, Dincer I, Hepbasli A. Energy and exergy analysis of new four-step copper-chlorine cycle for geothermal-based hydrogen production. International Journal of Energy 2010;35:3263-72
[27] MARSHALL AC, An assessment of Reactor types for thermochemical hydrogen production. Sandia National Labratories.2002
[28] Orhan MF. Conceptual design, analysis and optimization of nuclear-based hydrogen production via copper-chlorine thermochemical cycle: A thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in The Faculty of Engineering and Applied Science, Mechanical Engineering Program, University of Ontario Institute of Technology 2011