روش‌های مرطوب‌سازی گازهای واکنشگر پیل سوختی غشا پلیمری

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک دانشگاه اصفهان

2 استادیار گروه مهندسی مکانیک دانشگاه اصفهان

چکیده

کنترل رطوبت گازهای واکنشگر پیل سوختی تأثیر به‌سزایی در عملکرد پیل دارد. آب کم در غشاء سبب خشکی موضعی غشاء و به‌دنبال آن ایجاد گرادیان‌های دما و تنش‌های مکانیکی و آب زیاد سبب بسته‌شدن بخشی از حفره‌های لایة پخش گاز می‌شود. در هر دو حالت عملکرد پیل افت پیدا می‌کند و از طول عمر آن کم می‌شود. از این‌رو برای دست‌یابی به رطوبت بهینه در پیل، مرطوب‌سازی گازهای واکنشگر هم در سمت آند و هم در سمت کاتد ضروری است. در این مقاله انواع روش‌های مرطوب‌سازی معرفی و با یکدیگر مقایسه شده‌اند. به‌طور کلی، روش‌های مرطوب‌سازی به دو دستة داخلی و خارجی تقسیم می‌شوند که البته استفاده از مرطوب‌ساز خارجی متداول‌تر است. مرطوب‌سازی خارجی عمدتاً شامل روش‌های حبابی، چرخ آنتالپی و روش غشایی می‌باشد که البته روش آخر به‌دلیل سادگی ساخت و هندسه، مصرف انرژی کمتر، بازده بیشتر و توانایی کنترل بهتر رطوبت و دما، بهترین روش است. استفاده از رطوبت خروجی کاتد پیل برای مرطوب‌سازی به‌صورت یک مجموعه چرخه‌ای و پیکربندی جریان مخالف بهترین عملکرد مرطوب‌ساز غشایی را درپی دارد. نتایج نشان می‌دهد که کاهش دبی و افزایش فشار و دمای ورودی گاز خشک سبب بهبود عملکرد مرطوب‌ساز غشایی است.

کلیدواژه‌ها


[1] Um, S., Wang C.Y., “Computational study of water transport in proton exchange membrane fuel cell”, journal of Power Sources, 156, pp. 211-223, 2006.
[2] Evans, J.P., “Experimental Evaluation of the Effect of Inlet Gas Humidification on Fuel Cell Performance”, M.S. Thesis, the Virginia Polytechnic and State University, 2003.
[3] Huizing, R., “Design and Membrane Selection for Gas to Gas Humidifiers for Fuel Cell Applications”, M.A. Thesis, University of Waterloo, 2007.
[4] Afshari, E., “and Jazayeri, S.A., “Analyses of heat and water transport interactions in a proton exchange membrane fuel cell”, journal of Power Sources, 194, pp. 423–432, 2006.
[5] Pasaogullari, U. and Wang, C.Y., “Two-phase transport in polymer electrolyte fuel cells with bi-layer cathode gas diffusion media”, Journal of Electrochemical Society, 152, pp. A380-A390, 2005.
[6] Ramya, K., Sreenivas, J., and Dhathathreyan, K.S., “Study of a porous membrane humidification method in polymer electrolyte fuel cells”, International Journal of Hydrogen Energy, 36(18), pp. 1-7, 2011.
[7] Lee, Y.T., Kim, Y.C., and Jiang, Y.H., “Effects of external humidification on the performance of a polymer electrolyte fuel cell”, Journal of Mechanical Scienceand Technology, 21, pp. 2188-2195, 2007.
[8] Williams, M.V., Kunz, H.R., and Fenton, J.M., “Operation of Nafion(R)-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers”, Journal of Power Sources, 135(1-2), pp. 122-134, 2004.
[9] Jeon, D.H., Kim, K.N., Baek, S.M., and Nam, J.H., “The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells”, International Journal of Hydrogen Energy, 36, pp. 12499-12511, 2011.
[10] Hyun, D., and Kim, J., “Study of external humidification method in proton exchange membrane fuel cell”, Journal of Power Sources, 126 (1e2), pp. 98-103, 2004.
[11] Choi, K.H., Park, D.J., Rho, Y.W., Kho, Y.T., and Lee, T.H., “A study of the internal humidification of an integrated PEMFC stack” , Journal of Power Sources, 74(1), pp. 146-150, 1998.
[12] Santis, M., Schmid, D., Ruge, M., Freunberger, S., and Büchi, F., “Modular Stack-Internal Air Humidification Concept-Verification in a 1 kW Stack,” Fuel Cells, 4(3), pp. 214- 218, 2004.
[13] Kwak, S.H., Yang, T.H., Kim,, C.S., and Yoon,, K.H., “The effect of Pt loading in the self- humidifying polymer electrolyte membrane on water uptake”, journal of Power Sources, 118, pp. 200-204, 2003.
[14] Lee, H.K., Kim, J.I., and Park, J.H., “A study on self-humidifying PEMFC using PteZrPeNafion composite membrane”, Electrochimica Acta, 50 (23), pp. 761-768, 2004.
[15] Liu, Y., Yi, B., Shao, Z., Wang, L., Xing, D., and Zhang, H., “Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications,” Journal of Power Sources, 163(2), pp. 807-813, 2007.
[16] Han, M., Chan, S., and Jiang, S., “Investigation of self-humidifying anode in polymer electrolyte fuel cells,” International Journal of Hydrogen Energy, 32(3), pp. 385- 391, 2007.
[17] Ge, S., Li, X., and Hsing, I., “Internally humidified polymer electrolyte fuel cells using water absorbing sponge,” Electrochimica Acta, 50(9), pp. 1909-1916, 2005.
[18] Litster, S., and Santiago, J.G., “Dry gas operation of proton exchange membrane fuel cells with parallel channels: Non-porous versus porous plates,” Journal of Power Sources, 188(1), pp. 82-88, 2009.
[19] Qi, Z. and Kaufman, A., “PEM fuel cell stacks operated under dry-reactant conditions”, Journal of Power Sources 109(2), pp. 469-476, 2002.
[20] Wood, D.L., Yi, J.S., and Nguyen, T.V., “Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells”, Electrochimica Acta, 43(24), pp. 3795-3809, 1998.
[21] Thorat, B., Shevade, A., Bhilegaonkar, K., Aglawe, R., Parasu, V.U., Thakre, S., Pandit, A., Sawant, S., and Joshi, J., “Effect of Sparger Design and Height to Diameter Ratio on Fractional Gas Hold-up in Bubble Columns”, Trans. IChemE, 76, pp. 823-834, 1998.
[22] Dunlavy, A., “Dynamic Modeling of Two-Phase Heat and Vapor Transfer Characteristics in a Gas-to-Gas Membrane Humidifier for Use in Automotive PEM Fuel Cells”, M.S. thesis, Auburn University, 2009.
[23] Casalegno, A., Antonellis, S.D., Colombo, L., and Rinaldi, F., “Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell”, International Journal of Hydrogen Energy, 36, pp. 5000-5009, 2011.
[24] Chena, D., Li,, W., Peng, H., “An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control”, journal of Power Sources, 180, pp. 461-467, 2008.
[25] Proracki, A., “Predictive Modeling of a PEMFC Cathode Humidifier”, M.S. thesis, University of Waterloo, 2010.
[26] Sabharwal, M., Duelk, C., and Bhatia, D., “Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications”, Journal of Membrane Science, 409– 410, pp. 285– 301, 2012.
[27] Vasua, G.A., Tangiralaa, K., Viswanathana, B., and Dhathathreyanb, K.S., Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system”, International Journal of Hydrogen Energy, 33, pp. 4640–4648, 2008.
[28] Yu, S., Im, S., Kim, S., Hwang, J., Lee, Y., Kang, S., and Ahn, K., “A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization”, International Journal of Heat and Mass Transfer, 54, pp. 1344–1351, 2011.
[29] Hwang, J.J., Chang, W.R., Kao, J.K., and Wu, W., “Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stacks”, journal of Power Sources, 215, pp. 69-75, 2012.
[30] Zhang, Y., Brenner, A.M., Gasteiger, H.A., Goebel, S.G., and Skala, G.W., “Membrane humidifier for a fuel cell”, US Patent number 7,875,396 B2, 2011.
[31] Park, S. and Oh, I.H., “an analytical model of Nafion membrane humidifier for proton exchange membrane fuel cells”, journal of Power Sources, 188, pp. 498–501, 2009.
[32] Chen, D., and Peng, H., “A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control”, ASME J. Dyn. Syst. Meas. Control, 127, pp. 424-432, 2005.
[33] Cave, P., and Merida, W., “Water flux in membrane fuel cell humidifiers: Flow rate and channel location, effects”, journal of Power Sources, 175, pp. 408–418, 2008.
[34] Huizing, R., Fowler, M., Merida, W., and Dean, J., “Design methodology for membrane-based plate-and-frame fuel cell humidifiers”, journal of Power Sources, 180, pp. 265–275, 2008.
[35] Jung, S.H., Kim, S.L., Kim, M.S., Park, Y., and Lim, T.W., “Experimental study of gas humidification with injectors for automotive PEM fuel cell systems”, journal of Power Sources, 170, pp. 324–333, 2007.
[36] Kang, S., Min, K., Yu, S., “Dynamic modeling of a proton exchange membrane fuel cell system with a shell-and-tube gas-to-gas membrane humidifier”, International Journal of Hydrogen Energy, 37, pp. 5866-5875, 2012.