بررسی اثر تشعشع بر خواص مکانیکی آلیاژهای فلزی

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی دکتری، مجتمع دانشگاهی هوافضا دانشگاه صنعتی مالک اشتر

2 استادیار مجتمع دانشگاهی هوافضا دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله ارتباط خواص مکانیکی با تشعشع بررسی شده است. برای این منظور، نخست مفهوم تشعشع به‌اجمال بیان و دو نوع تشعشع شامل تشعشعات کیهانی و هسته‌ای تشریح می‌شود. بخش اعظم این مقاله بر مفهوم تشعشعات هسته‌ای (نوترونی) تمرکز داردف از همین رو مبحث آسیب تشعشعی در انتهای مقاله به تفصیل مورد بررسی قرار می‌گیرد. سپس مقاله‌ها و پژوهش‌های انجام‌شده در زمینة اثر تشعشع بر خواص مکانیکی بررسی و مرور می‌شود. پس از آن، به‌ترتیب اثر تشعشع بر سخت‌شوندگی و تغییر شکل، سخت‌شوندگی تشعشعی، دمای انتقال از حالت نرم به ترد و انرژی حد بالایی، چقرمگی شکست و خستگی بررسی و دربارة علل فیزیکی و مکانیکی آن بحث می‌شود. در پایان سازوکارهای آسیب تشعشعی تشریح و آثار آن مرور می‌شود.

کلیدواژه‌ها


[1] Wikipedia, online encyclopedia, https://www.wikipedia.org (accessed November 20, 2014)

[2] Tribble, A.C., the Space Environment: Implications for Spacecraft Design, Princeton University Press, 2003.

[3] Kleiman, J.I., Z. Iskanderova, “Protection of Materials and Structures from Space Environment.” Proceedings of ICPMSE-6, Kluwer Academic Publishers, 2004.

[4] James, K.F., R.W. Norton, M.B. Alexander. The Natural Space Environment: Effects on Spacecraft, NASA Reference Publication 1350, 1994.

[5] Reimers, W., A.R. Pyzalla, A.K. Schreyer, H. Clemens. Neutrons and Synchrotron Radiation in Engineering Materials Science, Wiley-VCH, Germany, 2008.

[6] Margolin, B., A. Sorokin, V. Smirnov, V. Potapova. “Physical and Mechanical Modelling of Neutron Irradiation Effect on Ductile Fracture. Part 1.Prediction of Fracture Strain and Fracture Toughness of Austenitic Steels.” Journal of Nuclear Materials, xxx, xxx-xxx, 2014.

[7] Chen, Y. Irradiation Effects of HT-9 Martensitic Steel, Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA, 2013.

[8] Norgett, M.J., M.T. Robinson, I.M. Torrens. “A Proposed Method of Calculating Displacement Dose Rates.” Nuclear Engineering and Design, 33, pp. 50-54, 1975.

[9] Byun, T.S., M.B. Toloczko, T.A. Saleh, S.A. Maloy. “Irradiation Dose and Temperature Dependence of Fracture Toughness in High Dose HT9 Steel from the Fuel Duct of FFTF.” Journal of Nuclear Materials, 432, pp. 1-8, 2013.

[10] Cockeram, B.V., T.S. Byun, K.J. Leonard, J.L. Hollenbeck, L.L. Snead. “Post-irradiation fracture toughness of Unalloyed Molybdenum, ODS Molybdenum, and TZM Molybdenum Following Irradiation at 244 to 507.” Journal of Nuclear Materials, 440, pp. 382-413, 2013.

[11] Xu, W., Y. Zhang, G. Cheng, W. Jian, P.C. Millett, C.C. Koch, S.N. Mathaudhu, Y. Zhu. “In-situ Atomic-scale Observation of Irradiation-induced Void Formation.” Nature Communications, DOI: 10.1038/ncomms3288, 2013.

[12] Krishna, S., S. De. “A temperature and Rate-dependent Micromechanical Model of molybdenum under Neutron irradiation.” Journal of Mechanics of Materials 43, pp. 99–110, 2011.

[13] Kalinin, G.M., A.S. Artyugin, M.V. Yvseev, V.V. Shushlebin, L.P. Sinelnikov, Y.S. Strebkov. “The Effect of Irradiation on Tensile Properties and Fracture Toughness of CuCrZr and CuCrNiSi alloys.” Journal of Nuclear Materials 417, pp. 908-911, 2011.

[14] Chopra, O.K., A. S. Rao. “A Review of Irradiation Effects on LWR Core Internal Materials-IASCC Susceptibility and Crack Growth rates of Austenitic Stainless Steels.” Journal of Nuclear Materials 409, pp. 235–256, 2011.

[15] Chen, Y., O.K. Chopra, W.K. Soppet, W.J. Shack, Y. Yang, T. Allen, A.S. Rao. “Cracking Behavior and Microstructure of Austenitic Stainless Steels and Alloys 690 Irradiated in BOR-60 Reactor, Phase I.” The Report of Argonne National Laboratory, Nuclear Engineering division, U. S. Department of Energy, 2007.

[16] Allen, T.R., J.I. Cole, C.L. Trybus, D.L. Porter, H. Tsai, F. Garner, E.A. Kenik, T. Yoshitake, J. Ohta. “The Effect of Dose Rate on the Response of Austenitic Stainless Steels to Neutron Radiation.” Journal of Nuclear Materials 348, pp. 148–164, 2006.

[17] Maloy, S.A., M.B. Toloczko, K. J. McClellan, T. Romero, Y. Kohno, F. A. Garner, R. J. Kurtz and A. Kimura, “The Effects of Fast Reactor Irradiation Conditions on the Tensile Properties of two Ferritic/Martensitic Steels.” Journal of Nuclear Materials 356, pp. 62–69, 2006.

[18] Klueh, R.L., N. Hashimoto, M.A. Sokolov, K. Shiba, S. Jitsukawa. “Mechanical properties of Neutron-irradiated Nickel-containing Martensitic Steels: I. Experimental Study.” Journal of Nuclear Materials 357, pp. 156–168, 2006.

[19] Klueh, R.L., N. Hashimoto, M.A. Sokolov, K. Shiba, P.J. Maziasz, S. Jitsukawa. “Mechanical Properties of Neutron-irradiated Nickel-containing Martensitic Steels: II. Review and Analysis of Helium-effects Studies.” Journal of Nuclear Materials 357, pp. 169–182, 2006.

[20] X. Jia, Y. Dai. “The Change of Fracture Toughness of Martensitic Steels after Irradiation in SINQ Target-3.” Journal of Nuclear Materials 356, pp. 50–55, 2006.

[21] Yamamoto, T., G.R. Odette, H. Kishimoto, J.W. Rensman, P. Miao “On the Effects of Irradiation and Helium on the Yield Stress Changes and Hardening and Non-hardening Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data.” Journal of Nuclear Materials 356, pp. 27-49, 2006.

[22] Allen, T.R., H. Tsai, J.I. Cole, J. Ohta, K. Dohi, Hideo Kusanagi. Proceedings of ICONE10 10TH International Conference on Nuclear Engineering, ICONE-10. ASME, Arlington, VA, USA, 2002.

[23] Hirose, T., H. Tanigawa, M. Ando, A. Kohyama, Y. Katoh, M. Narui. “Radiation Effects on Low Cycle Fatigue Properties of Reduced Activation Ferritic/Martensitic Steels.” Journal of Nuclear Materials 307–311, pp. 304–307, 2002.

[24] Stoller, R.E., S.J. Zinkle. “On the Relationship between Uniaxial Yield Strength and Resolved Shear Stress in Polycrystalline Materials.” Journal of Nuclear Materials 283-287, pp. 349-352, 2000.

[25] Was, G.S. Fundamentals of Radiation Materials Science, Metals and Alloys, Springer, Materials Science and Engineering, University of Michigan, USA, 2007.

[26] Dissemination of IT for the Promotion of Materials Science, http://www.doitpoms.ac.uk. (accessed November 14, 2014)