تأثیر نانوسیالات در بهبود فرایند جوشش استخری

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی دکتری، دانشکدة مهندسی مکانیک دانشگاه علم و صنعت ایران

2 دانشیار دانشکدة مهندسی مکانیک دانشگاه علم و صنعت ایران

چکیده

طی سالیان اخیر، افزودن نانوذرات معلق در سیالات خنک‌کننده به‌عنوان راهکاری برای بهبود خواص حرارتی سیستم‌ها بسیار مورد توجه قرار گرفته است. هرچند هنوز هم نظری قطعی دربارة ساوکار بهبود انتقال حرارت برای نانوذرات داخل سیال ارائه نشده است، اما پژوهشگران آزمایشات متعددی دربارة قابلیت کاربرد آنها انجام داده‌اند و نانوسیالات را نسل آیندة سیالات خنک‌کننده می‌دانند. از جمله زمینه‌های مهم انتقال حرارت که با نرخ‌های بالای شار سروکار دارد، جوشش است. علاوه بر پیچیدگی‌های رفتار نانوسیال، سازوکار فرایند جوشش نیز هنوز به‌درستی درک نشده است. طی یک دهة گذشته، مطالعات آزمایشگاهی گسترده‌ای دربارة جوشش نانوسیالات با تغییر پارامترهای جنس و زبری و ترشوندگی سطح گرمکن، جنس و اندازه و شکل نانوذرات، نوع سیال پایه و شرایط فشار و دما، زمان و روند انجام آزمایش و جز این‌ها انجام شده است. در این مقاله، ابتدا مفهوم بهبود جوشش استخری و نتایج حاصل از تأثیر نانوسیالات بر شار حرارتی بحرانی و انتقال حرارت جوششی مرور می‌شود. سپس، دلائل افزایش قطعی شار حرارتی بحرانی (البته با مقادیر متفاوت) و نتایج متناقض انتقال حرارت جوششی با توجه به پارامترهای زیاد دخیل در فرایند مانند تغییر در خواص سطح گرمکن و خواص فیزیکی سیال پایه بررسی می‌شود. در پایان، مسیر آیندة تحقیقات در این زمینه با توجه به ابهامات موجود و تجهیزات آزمایشگاهی مورد نیاز برای بررسی دقیق‌تر فرایند جوشش نانوسیالات ارائه می‌گردد.

کلیدواژه‌ها


[1] Lu, M. C., Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures, 2010.

[2] Sarafraz, M.M., F. Hormozi. “Pool boiling heat transfer to dilute copper oxide aqueous nanofluids.” International Journal of Thermal Sciences 90, 2015, pp. 224-237.

[3] Wen, D. “Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF).” Int J Heat Mass Transf, vol. 51, 2008, pp. 4958-4965.

[4] Cho, H. H., B. S. Kim. “Nanotechnology on Boiling Heat Transfer for a Next-generation Cooling Technology.” J Material SciEng, vol. 1, 2012.

[5] Das, S. K., N. Putrab, W. Roetzel. “Pool boiling characteristics of nano-fluids.” Int J Heat Mass Transf, vol. 46, 2003, pp. 851-862.

[6] Wen, D. “Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF).” Int J Heat Mass Transf, vol. 51, 2008, pp. 4958-4965.

[7] Kim, H. M. Kim. “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids.” Heat Mass Transf, vol. 45, 2009, pp. 991-998.

[8] Witharana, S. “Boiling of refrigerants on enhanced surfaces and boiling of nanofluids”, MSc. Thesis, Royal Institute of Technology, Sweden, 2003.

[9] You, S.M., Kim J.H., Kim K.H. “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer.” Appl. Phys. Lett, 83:3374-3376, 2003.

[10] Vassallo, P., R. Kumar, S. D’Amico. “Pool boiling heat transfer experiments insilica-water nano-fluids.” Int J Heat Mass Transf, 47(2):407-411, 2004.

[11] Wen, D., Y. Ding. “Experimental investigation into the pool boiling heat transfer of aqueous based -alumina nanofluids.” J Nanoparticle Res,7:265-274, 2005.

[12] Bang, I.C., Heung Chang. “Boiling heat transfer performance and phenomena of Al2O3 -water nanofluids from a plain surface in a pool.” Int J Heat Mass Transf, 48:2407-2419, 2005.

[13] Ding, Y., “Heat transfer intensification using nanofluids.” KONA, 25(25):23-38, 2007.

[14] Park, K.J., D. Jung. “Enhancement of nucleate boiling heat transfer using carbon nanotubes.” Int J Heat Mass Transf, 50:4499-4502, 2007.

[15] Kim, S.J., I.C. Banga, J. Buongiorn. “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux.” Int J Heat Mass Transf, 50(19-20):4105-4116, 2007.

[16] Chopkar, M., A.K. Das, I. Manna, P. K. Das. “Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool.” Heat Mass Transf, 44(8):999-1004, 2007.

[17] Liu Z.h., Liao, L. “Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling.” Int J Heat Mass Transf, 51(9-10):2593-2602, 2008.

[18] Trisaksri, V., S. Wongwises. “Nucleate pool boiling heat transfer of TiO2-R141b nanofluids.” Int J Heat Mass Transf, 52(5-6):1582-1588, 2009.

[19] Peng, H., G. Dinga, W. Jianga, H. Hua, Y. Gao. “Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube.” Int J Refrigeration, 32(6):1259-1270, 2009.

[20] Boudouh, M., Gualous, H.L., Labachelerie, M. “Local convective boiling heattransfer and pressure drop of nanofluid in narrow rectangular channels.” Appl. Therm. Eng., 30(17-18):2619-2631, 2010.

[21] Soltani, S., S.G. Etemad, J. Thibault. “Pool boiling heat transfer of non-Newtonian nanofluids.” Int Commun Heat Mass Transf, 2010, 37(1):29-33.

[22] Liu, Z.H., X.F. Yang, J. G. Xiong. “Boiling characteristics of carbon nanotubesuspensions under sub-atmospheric pressures.” Int J ThermSci,49(7):1156-1164, 2010.

[23] Suriyawong, A., S. Wongwises. “Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations.” ExpTherm Fluid Sci, 34(8):992-999, 2010.

[24] Kwark, S.M., Ratan Kumara, Gilberto Morenoa, Jaisuk Yoob, Seung M. You. “Pool boiling characteristics of low concentration nanofluids.” Int J Heat Mass Transf, vol. 53, pp. 972-981, 2010.

[25] Park, Ki-Jung, Dong gyu Kang, Dongsoo Jung. “Nucleate boiling heat transfer in nanofluids with carbon nanotubes up to critical heat fluxes.” JMechSci and Tech 25 (10) 2647-2655, 2011.

[26] Gerardi, C., J. Buongiorno, L.W. Hu, T. McKrell. “Infrared thermometry study ofnanofluid pool boiling phenomena.” Nanoscale Res. Lett. 6, 232–248, 2011.

[27] Kole, M., T.K. Dey. “Investigations on the pool boiling heat transfer and criticalheat flux of ZnO–ethylene glycol nanofluids.” Appl. Therm. Eng. 37, 2012, pp. 112-119.

[28] Vazquez, D.M., R. Kumar. “Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling.” Int. Commun. Heat Mass Transfer 41, 2013, pp. 1–9.

[29] Shahmoradi, Z., N. Etesami, M.N. Esfahany. “Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis.” Int. Commun. HeatMass Transfer 47, 2013, pp. 113–120.

[30] Amiri, A., M. Shanbedi, H. Amiri, S.Z. Heris, S.N. Kazi, B.T. Chew, H. Eshghi. “Pool Boiling Heat Transfer of CNT/Water Nanofluids.” Applied Thermal Engineering, 2014.

[31] Mohamadifard, K., S. Z. Heris, M. Honarmand. “Experimental Investigation of Pool Boiling Performance of Alumina/Ethylene-Glycol/Water (60/40) Nanofluids.” Journal of Thermophysics and Heat Transfer, Vol. 28, No. 4, 2014, pp. 724-734.

[32] Wen, D.S., B.X. Wang. “Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions.” Int J Heat Mass Transf, vol. 45, 2002, pp. 1739-1747.

[33] Barber, J.,D. Brutin, L. Tadrist. “A review on boiling heat transfer enhancement with nanofluids.” Nanoscale Research Letters, vol. 6, 2011, pp. 1-16.

[34] O'Hanley, H., C. Coyle1, J. Buongiorno. “Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux.” Appl. Phys. Lett. 103, 2013.

[35] Kim, H.D., Kim, J., Kim, M.H. “Effect of nanoparticles on CHF in pool boiling of nano-fluids", Int. J. of Heat and Mass Transfer, 49, 2006, pp. 5070–5074.

[36] Ganapathy, H., V. Sajith. “Semi-analytical model for pool boiling of nanofluids.’ Int J Heat Mass Transf, vol. 57, 2013, pp. 32-47.

[37] Jones, B. J., et al., “The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer.” Journal of Heat Transfer, vol. 131, 2009.

[38] Narayan, G.P., K.B. Anoop, Sarit K. Das. “Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes” J App Phys, vol. 102, pp. 7-7-17, 2007.

[39] Park, Seong Dae, Sung Bo Moon, In Cheol Bang. “Effects of thickness of boiling-induced nanoparticle deposition on the saturation of critical heat flux enhancement.” International Journal of Heat and Mass Transfer 78, 2014, pp. 506–514.

[40] Kim, Hyungdae, Eunho Kim, Moo Hwan Kim “Effect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire.” International Journal of Heat and Mass Transfer 69, 2014, pp. 164–172.

[41] Harish, G., V. Emlin, V. Sajith. “Effect of surface particle interactions during pool boiling of nanofluids.” Int J TherSci, vol. 50, pp. 2318-2327, 2011.

[42] Taylor, R. A., P. E. Phelan. “Pool boiling of nanofluids: Comprehensive review of existing data and limited new data.” Int J Heat Mass Transf, vol. 52, pp. 5339-5347, 2009.

[43] Ahn, H.S., J.M. Kim, M. Kaviany, M.H. Kim. “Pool boiling experiments inreduced graphene oxide colloids, part Ieboiling characteristics.” Int. J. Heat.Mass Transf. 74, 501-512, 2014.

[44] Wang, C. H., V. K. Dhir. “Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface.” J Heat Transf, vol. 115, pp. 659-669, 1993.

[45] Cooper, M.G. “Heat flows rates in saturated pool boiling – a wide ranging examination using reduced properties.” Ad in Heat Transf, p. 82, 1984.

[46] Wen D. S., B. X. Wang. “Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions.” International Journal of Heat and Mass Transfer, vol. 45, pp. 1739-1747, 2002.

[47] Liaw, S. P., V. K. Dhir. “Void Fraction Measurements During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces.” J Heat Transf, vol. 111, pp. 731-738, 1989.

[48] Takata, Y., S. Hidaka, J.M. Cao, T. Nakamura, H. Yamamoto, M. Masuda. “Effect of surface wettability on boiling and evaporation.” Energy, vol. 30, pp. 209-220, 2005.

[49] Griffith, P., D. Wallis. “The Role of Surface Conditions in Nucleate Boiling.” Presented at the Third National Heat Transfer Conference A.S.M.E - A.I.Ch.E., Storrs, Connecticut, 1959.

[50] Hummel, R. L. “Means for increasing the heat transfer coefficient between a wall and boiling liquid”, U.S. Patent, 1965.

[51] Phan, H. T., Nadia Caneya, Philippe Martya, Stéphane Colasson. “Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism.” International Journal of Heat and Mass Transfer, vol. 52, pp. 5459-5471, 2009.

[52] Witharana, S. “Thermal Transport in Nanofluids: Boiling heat transfer.” Ph.D Thesis, The University of Leeds, 2011.

[53] Jingliang Bi, Kambiz Vafai, David M. Christopher, “Heat transfer characteristics and CHF prediction in nanofluid boiling.” International Journal of Heat and Mass Transfer 80, 256–265, 2015.