طراحی بهینه سازه دیسک دوار یک موتور توربینی با روش‌ های بهینه ‌سازی مدرن

نوع مقاله : علمی پژوهشی

نویسنده

استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر

چکیده

در پژوهش حاضر تحلیل اولیه سازه دیسک دوار مورد استفاده در یک موتور توربینی هوایی و بهینه‌ سازی هندسه آن جهت رسیدن به کمترین جرم در کنار اطمینان مناسب انجام شده است. دیسک مورد بحث همگن و تحت بارگذاری ‌های مکانیکی و حرارتی قرار دارد. جهت تحلیل ترموالاستیک دیسک مفروض روابط حاکم با فرض شرایط تنش صفحه ‌ای استخراج و به کمک نرم‌ افزار محاسباتی متلب تحلیل شده است. به ‌منظور بهینه ‌سازی هندسه از روش‌ های بهینه‌ سازی گرادیانی شمارشی (CSA) و غیر گرادیانی الگوریتم ژنتیک (GA) و الگوریتم کلونی زنبور عسل مصنوعی (ABC) استفاده‌ شده است. مقایسه نتایج به ترتیب نشان ‌دهنده کاهش 49/36، 51/39 و 43/36 درصدی جرم اولیه دیسک با روش ‌های بهینه ‌سازی‌ مورد استفاده است. همچنین زمان تقریبی لازم جهت رسیدن به نتایج بهینه‌ سازی در این روش ‌ها به ترتیب برابر با 3500، 120 و 100 دقیقه بوده است. نتایج نشان می‌ دهند که بیشترین میزان بهبود نتایج مربوط به روش غیرگرادیانی الگوریتم  GAاست. همچنین سرعت همگرایی در روش ‌های غیرگرادیانی الگوریتم  GAو ABC در حدود 30 تا 35 برابر بیشتر از روش CSA است. در نتیجه با توجه به زمان ‌بر بودن تحلیل ‌های گرادیانی اهمیت روش ‌های غیر گرادیانی در صرفه‌ جویی زمان و هزینه‌ های محاسباتی نیز بیشتر نمایان شده و با توجه به نتایج استفاده از روش GA به ‌عنوان یک روش دقیق و با سرعت مطلوب در بهینه‌ سازی مسائل دوار در معرض بارگذاری ‌های ترموالاستیک پیشنهاد شده است.

کلیدواژه‌ها

موضوعات


[1] B. MacIsaac and R. Langton, Gas turbine propulsion systems. John Wiley & Sons, 2011.
 
[2] S. Timoshanko and T. Goodier, "Theory of elasticity McGraw-Hill," ed: New York, USA, 1970.
 
[3] F. Vivio and L. Vullo, "Elastic–plastic analysis of rotating disks having non-linearly variable thickness: residual stresses by overspeeding and service stress state reduction," Annals of Solid and Structural Mechanics, vol. 1, pp. 87-102, 2010.
 
[4] Y. Zheng, H. Bahaloo, D. Mousanezhad, E. Mahdi, A. Vaziri, and H. Nayeb-Hashemi, "Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity," International Journal of Mechanical Sciences, vol. 119, pp. 283-293, 2016. doi: 10.1016/j.ijmecsci.2016.10.018.
 
[5] S. Yousefi, B. Shahriari, and M. s. Sadeghinezhad, "Elastic analysis of the rotating FGM spool drum of the axial compressor in aero gas turbine engine," (in Persian), Aerospace Knowledge and Technology Journal, vol. 8, no. 2, pp. 55-66, 2020. [Online]. Available: https://www.astjournal.ir/article_38496_0c8f98c5e9590bbb9e60d7bf027ae630.pdf.
 
[6] B. Shahriari, and M. S., Sadeghi Nezhad, "Investigation on Effective Factors in Thermoelastic Analysis of FGM Rotating Drum in Air Turbine Engine under Nonlinear Thermal Loading, " Mechanics of Advanced and Smart Materials, vol. 1, no. 2, pp. 106-135, 2022. [in Persian] doi:10.52547/masm.1.2.106.
 
[7] J. Chern and W. Prager, "Optimal design of rotating disk for given radial displacement of edge," journal of Optimization Theory and Applications, vol. 6, pp. 161-170, 1970. doi:10.1007/BF00927049.
 
[8] V. Malkov and E. SALGANSKAIA, "Optimal material distribution in rotating discs for maximal strength," Soviet Aeronautics, vol. 19, no. 3, pp. 46-50, 1976.
 
[9] B. Farshi, H. Jahed, and A. Mehrabian, "Optimum design of inhomogeneous non-uniform rotating discs," Computers & structures, vol. 82, no. 9-10, pp. 773-779, 2004, doi: https://doi.org/10.1016/j.compstruc.2004.02.005.
 
[10] H. Jahed, B. Farshi, and J. Bidabadi, "Minimum weight design of inhomogeneous rotating discs," International Journal of Pressure Vessels and Piping, vol. 82, no. 1, pp. 35-41, 2005. doi: 10.1016/j.ijpvp.2004.06.006.
 
[11] S. Mohan and D. Maiti, "Structural optimization of rotating disk using response surface equation and genetic algorithm," International Journal for Computational Methods in Engineering Science and Mechanics, vol. 14, no. 2, pp. 124-132, 2013. doi: 10.1080/15502287.2012.698712.
 
[12] M. Khorsand and Y. Tang, "Design functionally graded rotating disks under thermoelastic loads: Weight optimization," International Journal of Pressure Vessels and Piping, vol. 161, pp. 33-40, 2018, doi: https://doi.org/10.1016/j.ijpvp.2018.02.002.
 
[13] B. Shahriari, M. Sadeghinezhad, and S. Yousefi, "Thermoelastic analysis of compressor spool in turbojet engine and redesign it using functionally graded materials with opti-mal coefficients," Mechanics of Advanced Composite Structures, vol. 6, no. 2, pp. 167-179, 2019. doi: 10.22075/macs.2019.14686.1144.
 
[14] P. Tharun, M. Dharshan Siddarth, D. Prakash, and K. Babu, "Analysis and optimization on functionally graded rotating disk using grey relational method," in Advances in Manufacturing Processes: Select Proceedings of ICEMMM 2018, 2019: Springer, pp. 297-308. doi: 10.1007/978-981-13-1724-8_29.
 
[15] H. M. A. Abdalla, D. Casagrande, and L. Moro, "Thermo-mechanical analysis and optimization of functionally graded rotating disks," The Journal of Strain Analysis for Engineering Design, vol. 55, no. 5-6, pp. 159-171, 2020. doi: 10.1177/0309324720904793.
 
[16] F. Ahmad, Vishvajeet, V. Yadav, and S. Chauhan, "Finite Element Analysis-Based Geometry Optimization of a Disk Brake," in Advancement in Materials, Manufacturing and Energy Engineering, Vol. I: Select Proceedings of ICAMME 2021, 2022: Springer, pp. 225-240, doi: https://doi.org/10.1007/978-981-16-5371-1_20.
 
[17] S. Rahman, "Optimum material distributions for minimizing stresses in a rotating functionally graded material circular disk," 2022.
 
[18] B. Wang, G. Wang, Y. Shi, L. Huang, and K. Tian, "Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties," Mechanics of Advanced Materials and Structures, vol. 29, no. 28, pp. 7459-7475, 2022. doi: 10.1080/15376494.2021.2000080.
 
[19] Y. Cheng, L. Ce, D. Han, W. Cunfu, and Y. Zeyong, "Topology optimization of turbine disk considering maximum stress prediction and constraints," Chinese Journal of Aeronautics, 2023. doi: 10.1016/j.cja.2023.03.019.
 
[20] R. Madan and S. Bhowmick, "Optimum FG rotating disk of constant mass: lightweight and economical alternatives based on limit angular speed," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 47, no. 3, pp. 1019-1033, 2023. doi: 10.1007/s40997-022-00553-6.
 
[21] S. Rahman and M. A. Ali, "A Novel Approach to Optimize Material Distributions of Rotating Functionally Graded Circular Disk under Minimum and Prescribed Stresses," Materials Today Communications, p. 106620, 2023. doi: 10.1016/j.mtcomm.2023.106620.
 
[22] J. D. Mattingly, K. M. Boyer, and H. von Ohain, Elements of propulsion: gas turbines and rockets. American Institute of Aeronautics and Astronautics Reston, VA, 2006.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[23] S. S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2019.
 
[24] D. Kirk, "Optimal Control Theory: An Introduction, Courier Corporation," Courier Corporation, 2012.
 
[25] C. Karr and L. M. Freeman, Industrial applications of genetic algorithms. CRC press, 1998.
 
[26] V. Tereshko and T. Lee, "How information-mapping patterns determine foraging behaviour of a honey bee colony," Open Systems & Information Dynamics, vol. 9, no. 2, pp. 181-193, 2002. Doi: 10.1023/A:1015652810815.
 
[27] D. Karaboga and B. Akay, "A comparative study of artificial bee colony algorithm," Applied mathematics and computation, vol. 214, no. 1, pp. 108-132, 2009. doi: 10.1016/j.amc.2009.03.