آنالیز حساسیت پارامترهای مؤثر بر نرخ براده برداری و زبری سطح در فرآیند ماشین‌کاری تخلیه الکتریکی سیمی

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

2 دانشیار، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

مهم‌ ترین هدف صنعت ‌گران، به حداکثر رساندن نرخ براده برداری در حین کنترل کیفیت سطح می ‌باشد. در این مقاله با توجه به معادله رگرسیون به‌ دست‌ آمده از طراحی آزمایش به روش سطح پاسخ، به بررسی میزان و نحوه تأثیرگذاری هفت پارامتر فرآیند شامل، زمان روشنی پالس، زمان خاموشی پالس، زمان قطع قوس، ولتاژ گپ، نرخ تغذیه سیم، کشش سیم و فشار آب بر دو مشخصه نرخ براده ‌برداری و زبری سطح با استفاده از روش آنالیز حساسیت سوبل پرداخته ‌شده است. هدف از این تحقیق، انتخاب بهینه ‌ترین پارامتر در فرآیند ماشین‌ کاری به‌ منظور افزایش نرخ براده برداری و کاهش زبری سطح می ‌باشد. طبق نتایج به ‌دست ‌آمده از آنالیز حساسیت سوبل مشاهده می ‌شود که فاکتور زمان روشنی پالس و زمان خاموشی پالس هریک به ترتیب با 59% و 28% تأثیر، اثرگذارترین پارامترها بر نرخ براده ‌برداری و پارامترهای زمان روشنی پالس و فشار آب هر یک به ترتیب با 81% و 18% تأثیر، اثرگذارترین پارامترها بر زبری سطح می ‌باشند.

کلیدواژه‌ها

موضوعات


 
[1] V. K. Jain, Advanced machining processes. Allied publishers, 2009, Pvt. Limited, Twelth Reprint, Printing Division, A-104 Mayapuri Phase II, New Delhi - 11006, India, 2009, ISBN: 81-7764-294-4, india.
 
[2] A. B. Puri and B. Bhattacharyya, "An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM," International Journal of Machine Tools and Manufacture, vol. 43, no. 2, pp. 151-159, 2003,doi: https://doi.org/10.1016/S0890-6955(02)00158-X.
 
[3] M. Ghoreishi and A. J. J. A. M. Naderifard, "Thermal and Mechanical Modeling of Electro Discharge Machining Process Using Finite Element Method (FEM)," vol. 8, no. 4, pp. 1-11, 2012, doi: https://doi.org/10.1016/S0890-6955(02)00158-X.
 
[4] K. H. Ho and S. T. Newman, "State of the art electrical discharge machining (EDM)," International Journal of Machine Tools and Manufacture, vol. 43, no. 13, pp. 1287-1300, 2003, doi: https://doi.org/10.1016/S0890-6955(03)00162-7.
 
[5] M. Asadi and M. Ghoreyshi, "Investigation of Electro Discharge Machining Parameters Using Aluminium Powder Suspended in Dielectric," 2005.
 
[6] V. Kumar, A. Babu, R. Venkatasamy, and M. Raajenthiren, "Optimization of the WEDM parameters on machining Incoloy800 super alloy with multiple quality characteristics," Optimization , vol. 2, no. 6, pp. 1538-154, 2010.
 
[7] K. Ouahid, B. Lakhdar, A. Mohamed Walid, and B. Abderrahim, "Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration," Structural Engineering and Mechanics, An Intl Journal, vol. 70, pp. 395-405, 2019, doi: https://doi.org/10.12989/sem.2018.66.3.285.
 
[8] M. Barghamadi, S. Rahmati, and E. Shakouri, "Study of the effect of burnishing process on the surface roughness, micro hardness and corrosion of 316 L stainless steel implant machined by the electrical discharge machining process," Modares Mechanical Engineering, vol. 21, no. 3, pp. 129-142, 2021, doi: https://dorl.net/dor/20.1001.1.10275940.1399.21.3.2.0.
 
[9] S. Oskueyan, V. Abedini, and A. Hajialimohammadi, "Statistical Modeling of the Effective Parameters in Electrical Discharge Machining Process of Ti-6Al-4V Alloy Using the Mixtures of Aluminum Oxide and Silicon Oxide in Dielectric," Modares Mechanical Engineering, vol. 20, no. 6, pp. 1449-1462, 2020, doi: https://dorl.net/dor/20.1001.1.10275940.1399.20.6.4.5.
 
[10] A. Ramaswamy, A. Perumal, J. Jagadeesan, P. kaladharan, and H. V. Nagarajan, "Optimization of WEDM process parameters for D3 die steel using RSM," Materials Today: Proceedings, vol. 37, pp. 2063-2069, 2021, doi: https://doi.org/10.1016/j.matpr.2020.07.505.
 
[11] H. P. Nguyen, N. V. Ngo, and Q. T. Nguyen, "Optimizing process parameters in edm using low frequency vibration for material removal rate and surface roughness," Journal of King Saud University - Engineering Sciences, vol. 33, no. 4, pp. 284-291, 2021, doi: https://doi.org/10.1016/j.jksues.2020.05.002.
 
[12] M. SAIF, R. Rawat, and Sciences, "Investigation of aluminum alloy 6061 in Wire-EDM regarding surface roughness and material removal rate by adopting optimization techniques," Journal of Mechanical Engineering and Sciences pp. 9410-9420, 2023, doi: https://doi.org/10.15282/jmes.17.1.2023.10.0744.
 
[13] R. Chaudhari, P. Prajapati, S. Khanna, J. Vora, V.K. Patel, "Multi-response optimization of Al2O3 nanopowder-mixed wire electrical discharge machining process parameters of nitinol shape memory alloy," Materials, vol. 15, no. 6, 2022, doi: https://doi.org/10.3390/ma15062018.
 
[14] R. Chaudhari, J. Vora, L. López de Lacalle, S. Khanna, V. K. Patel, and I. J. Ayesta, "Parametric optimization and effect of nano-graphene mixed dielectric fluid on performance of wire electrical discharge machining process of Ni55. 8Ti shape memory alloy," Materials, vol. 14, no. 10, p. 2533, 2021, doi: https://doi.org/10.3390/ma14102533.
 
[15] Y. Nawaz, S. Maqsood, K. Naeem, R. Nawaz, M. Omair, and T. Habib, "Parametric optimization of material removal rate, surface roughness, and kerf width in high-speed wire electric discharge machining (HS-WEDM) of DC53 die steel," The International Journal of Advanced Manufacturing Technology, vol. 107, no. 7, pp. 3231-3245, 2020/04/01 2020, doi: https://doi.org/10.1007/s00170-020-05175-3.
 
[16] K. Balasubramanian, D. Palanisamy, E. AGS, and M. Processes, "Experimental investigations on WEDM process for machining high manganese steel," aterials and Manufacturing Processes,  vol. 35, no. 14, pp. 1612-1621, 2020, doi:http://dx.doi.org/10.1080/10426914.2020.1779941.
 
[17] C. Naresh, P. Bose, and C. Rao, "ANFIS based predictive model for wire edm responses involving material removal rate and surface roughness of Nitinol alloy," Materials Today: Proceedings, vol. 33, pp. 93-101, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.216.
 
[18] S. Vellingiri, R. Soundararajan, N. Mohankumar, K. Nithyananthakumar, and K. Muthuselvam, "Exploration on WEDM process parameters effect on LM13 alloy and LM13/SiC composites using Taguchi method," Materials Today: Proceedings, vol. 45, pp. 997-1003, 2021, doi: https://doi.org/10.1016/j.matpr.2020.03.050.
 
[19] A. Saltelli, "Making best use of model evaluations to compute sensitivity indices," Computer Physics Communications, vol. 145, no. 2, pp. 280-297, 2002, doi: https://doi.org/10.1016/S0010-4655(02)00280-1.
 
[20] A. Saltelli, S. Tarantola, and K.-S. J. T. Chan, "A quantitative model-independent method for global sensitivity analysis of model output," Technometrics, vol. 41, no. 1, pp. 39-56, 1999, doi: https://doi.org/10.2307/1270993.
 
[21] A. Nekahi and K. Dehghani, "Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology," Materials & Design, vol. 31, no. 8, pp. 3845-3851, 2010, doi: https://doi.org/10.1016/j.matdes.2010.03.038.
 
[22] C. J. Tzeng, Y. K. Yang, M. H. Hsieh, and M. C. Jeng, "Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, no. 6, pp. 841-852, 2011,doi: https://doi.org/10.1243/09544054JEM2021.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[23] J. Rezaeian, S. Jahanbakhshi, and S. J. J. o. P. R. Jamshidi, "Sensitivity Analysis of Production Parameters of an Iranian Oilfield Using Sobol Method," vol. 30, no. 99-4, pp. 37-46, 2020, doi: https://doi.org/10.22078/pr.2020.4111.2861.
 
[24] M. H. Korayem and Z. Rastegar, "Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle": FE Simulation  International Journal of Nanoscience and Nanotechnology, Nanoscience and Nanotechnology, vol. 8, no. 1, pp. 35-50, 2012.
 
[25] V. Tahmasbi, M. Ghoreishi, and M. J. M. M. E. Taheri, "Sensitivity analysis of material removal rate in dry electro-discharge machining process," Modares Mechanical Engineering, vol. 15, no. 13, pp. 382-386, 2016, doi: http://dorl.net/dor/20.1001.1.10275940.1394.15.13.57.7.
 
[26] P. Sharma, D. Chakradhar, S. J. M. Narendranath, and Design, "Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application," Materials & Design, vol. 88, pp. 558-566, 2015, doi: https://doi.org/10.1016/j.matdes.2015.09.036­­­.