بررسی‌ مقایسه‌ای رفتار رئولوژی نانو روغن‌های ‌دارای درصد ترکیب مختلف نانوذرات در روغن پایه و تعیین بهینه‌ترین نانو روانکار

نوع مقاله : علمی پژوهشی

نویسنده

دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران

چکیده

بررسی خواص دو نانو روانکار هیبریدی SAE40/MWCNT(30%)-ZnO(70%) و SAE40/MWCNT(50%)-ZnO(50%) در شرایط مختلف به روش‌های آزمایشگاهی و مدل سازی و معرفی نانو روانکار بهتر در این مطالعه انجام می‌شود. آزمایش‌ها در محدوده دمایی °C50-25، کسر حجمی 1-0625/0 درصد و نرخ برشی s-1 9331-5/666 و با استفاده از ویسکومتر بروکفیلد +2000 CAP انجام می‌شود. برای پایداری نانوروانکارها نیز از همزن مغناطیسی و دستگاه لرزاننده مافوق صوت استفاده می‌گردد. نتایج نشان می‌دهد هر دو نانو روانکار دارای رفتار غیر نیوتونی و از نوع شبه پلاستیک می‌باشند. بیش‌ترین افزایش ویسکوزیته برای نانو روانکار MWCNT-ZnO (50%-50%) /SAE40 و به میزان %28 و بیشترین افت ویسکوزیته برای نانو روانکار MWCNT-ZnO (30%-70%) /SAE40 و به میزان 3 درصد اتفاق افتاد و بنابراین نانوروانکار MWCNT-ZnO (30%-70%)/SAE40 دارای عملکرد بهتری بوده است. نتایج رابطه ارائه شده با روش rsm از تطابق خوبی با داده‌های آزمایشگاهی برخوردار است و همچنین 9999/0R2 = بدست آمد. مقدار %3 >MOD > %3- بدست آمد و بیانگر خطای کم مدلسازی است.

کلیدواژه‌ها

موضوعات


[1] D. Huang, Z. Wu, & B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers. Experimental Thermal and Fluid Science, 72, 190-196, 2016, https://doi.org/10.1016/j.expthermflusci.2015.11.009.
 
[2] N. Ahammed, L. G. Asirvatham, & S. Wongwises, Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. International Journal of Heat and Mass Transfer, 103, 1084-1097, 2016, https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070.
 
[3] M. K. A. Ali, H. Xianjun, R. F. Turkson, Z. Peng, & X. Chen, Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives, RSC advances, 6(81), 77913-77924, 2016,  https://doi.org/10.1039/C6RA10543B.
 
[4] H. Pourpasha, S. Z.  Heris, & M. Mohammadpourfard, The effect of TiO2 doped multi-walled carbon nanotubes synthesis on the thermophysical and heat transfer properties of transformer oil: A comprehensive experimental study. Case Studies in Thermal Engineering, 41, 102607,‏  2023, https://doi.org/10.1016/j.csite.2022.102607.
 
[5] M. Mokarian, & E. Ameri, The effect of Mg (OH) 2 nanoparticles on the rheological behavior of base engine oil SN500 HVI and providing a predictive new correlation of nanofluid viscosity. Arabian Journal of Chemistry, 15(6), 103767, 2022,  ‏ https://doi.org/10.1016/j.arabjc.2022.103767.
 
[6] H. Cheng, A. M. Abed, A. A.  Alizadeh, A. A.  Ghabra, F. M.  Altalbawy, R. Sabetvand, ... & Y. Riadi, The effect of temperature and external force on the thermal behavior of oil-based refrigerant inside a nanochannel using molecular dynamics simulation. Journal of Molecular Liquids, 369, 120893, 2023, ‏ https://doi.org/10.1016/j.molliq.2022.120893.
 
[7] X. X. Tian, R. Kalbasi, C. Qi, A. Karimipour, & H. L.  Huang, Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technology, 369, 261-269, 2020,  https://doi.org/10.1016/j.powtec.2020.05.004.
 
[8] R. Khoramian, R. Kharrat, & S. Golshokooh, The development of novel nanofluid for enhanced oil recovery application. Fuel, 311, 122558, 2022, ‏ https://doi.org/10.1016/j.fuel.2021.122558.
 
[9] M. Sepehrnia, M. Lotfalipour, M. Malekiyan, M. Karimi, & S. D. Farahani, Rheological Behavior of SAE50 Oil–SnO2–CeO2 Hybrid Nanofluid: Experimental Investigation and Modeling Utilizing Response Surface Method and Machine Learning Techniques. Nanoscale Research Letters, 17(1), 117,‏ (2022).  https://doi.org/10.1186/s11671-022-03756-7.
 
[10] M. Sepehrnia, K. Mohammadzadeh, M. M. Veyseh, E. Agah, & M. Amani, Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling. Powder Technology, 404, 117492,‏ (2022). https://doi.org/10.1016/j.powtec.2022.117492.
 
 [11] M. Jamei, I. A. Olumegbon, M. Karbasi, I. Ahmadianfar, A. Asadi, & M. Mosharaf-Dehkordi, On the Thermal Conductivity Assessment of Oil-Based Hybrid Nanofluids using Extended Kalman Filter integrated with feed-forward neural network. International Journal of Heat and Mass Transfer, 172, 121159, 2021, ‏ https://doi.org/10.1016/j.ijheatmasstransfer.2021.121159.
 
[12] S. B. Mousavi, S. Z. Heris, & P. Estellé, Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study. Fuel, 293, 12048, 2021, ‏ https://doi.org/10.1016/j.fuel.2021.120481.
 
[13] A. Keykhosravi, M. B. Vanani, & C. Aghayari, TiO2 nanoparticle-induced Xanthan Gum Polymer for EOR: Assessing the underlying mechanisms in oil-wet carbonates. Journal of Petroleum Science and Engineering, 204, 108756, 2021,  https://doi.org/10.1016/j.petrol.2021.108756.
 
[14] M. Farbod, & N. Bahmani, Fabrication of AlN nanoparticles by arc discharge method and investigation of thermal conductivity of AlN transformer oil-based nanofluid. Journal of the Australian Ceramic Society, 1-8,‏ 2022, https://doi.org/10.1007/s41779-022-00791-6.
 
[15] H. F. Asl, G. Zargar, A. K. Manshad, M. A. Takassi, J. A.  Ali, & A. Keshavarz, Effect of SiO2 nanoparticles on the performance of L-Arg and L-Cys surfactants for enhanced oil recovery in carbonate porous media. Journal of Molecular Liquids, 300, 112290,‏ 2020,  https://doi.org/10.1016/j.molliq.2019.112290.
 
[16] Y. M. Chu, M. Ibrahim, T. Saeed, A. S. Berrouk, E. A. Algehyne, & R. Kalbasi, Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. Journal of Molecular Liquids, 333, 115969, 2021,  https://doi.org/10.1016/j.molliq.2021.115969.
 
[17] A. Heydari, M. Goharimanesh, & M. R. Gharib, Dynamic viscosity analysis of hybrid nanofluid MWCNT-Al2O3/engine oil using statistical models with evaluating its performance in a double tube heat exchanger. Journal of Thermal Analysis and Calorimetry, 1-15, 2022, ‏ https://doi.org/10.1007/s10973-022-11608-w.
 
[18] M. Rejvani, A. Heidari, & S. Seadodin, Simultaneous effects of MWCNT and SiO2 on the rheological behavior of cooling oil and sensitivity analysis. Heliyon, e12942, 2023, ‏ https://doi.org/10.1016/j.heliyon.2023.e12942.
 
[19] S. Ganapathy, K. R. Viswanathan, S. Raju, & A. K. Appancheal, Comparative study of different nanolubricants for automotive applications (No. 2016-01-0486). SAE Technical Paper, 2016,  https://doi.org/10.4271/2016-01-0486.
 
[20] A. Asadi, M. Asadi, M. Rezaei, M. Siahmargoi, & F. Asadi, The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. International communications in heat and mass transfer, 78, 48-53, 2016,  https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021.
 
[21] M. Hemmat Esfe, M. Goodarzi, M. Reiszadeh, & M. Afrand, Evaluation of MWCNTs-ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization. Journal of Molecular Liquids, 277, 921-931, 2019,  https://doi.org/10.1016/j.molliq.2018.08.047.
 
[22] K. Sepyani, M. Afrand, & M. Hemmat Esfe, An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. Journal of Molecular Liquids, 236, 198-204, 2017,  https://doi.org/10.1016/j.molliq.2017.04.016.
 
[23] O. Hozien, W. M. El-Maghlany, M. M. Sorour, & Y. S. Mohamed, Experimental study on thermophysical properties of TiO2, ZnO and Ag water base nanofluids. Journal of Molecular Liquids, 334, 116128, 2021, https://doi.org/10.1016/j.molliq.2021.116128.
 
[24] M. H. Esfe, M. Afrand, S. H. Rostamian, & D. Toghraie, Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Experimental Thermal and Fluid Science, 80, 384-390, 2017,  https://doi.org/10.1016/j.expthermflusci.2016.07.011.
 
[25] E. Dardan, M. Afrand, & A. M. Isfahani, Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Applied Thermal Engineering, 109, 524-534, 2016, https://doi.org/10.1016/j.applthermaleng.2016.08.103.
 
[26] M. Hemmat Esfe, M. Afrand, W. M. Yan, H. Yarmand, D. Toghraie & M. Dahari, Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. International Communications in Heat and Mass Transfer, 76, 133-138, 2016, https://doi.org/10.1016/j.icheatmasstransfer.2016.05.015.
 
[27] J. Ma, A. Shahsavar, A. A. Al-Rashed, A. Karimipour, H.  Yarmand, & S. Rostami, Viscosity, cloud point, freezing point and flash point of zinc oxide/SAE50 nanolubricant. Journal of Molecular Liquids, 298, 112045, 2020, https://doi.org/10.1016/j.molliq.2019.112045.
 [28] M. A., Moghaddam, & K. Motahari, Experimental investigation, sensitivity analysis and modeling of rheological behavior of MWCNT-CuO (30–70)/SAE40 hybrid nano-lubricant. Applied thermal engineering, 123, 1419-1433, 2017,  https://doi.org/10.1016/j.applthermaleng.2017.05.200.
 
[29] N. Nayebpashaee, & S. M. M. Hadavi, Thermal conductivity and rheological studies for graphene-Al2O3/ethylene glycol-water hybrid nanofluid at low temperatures. In Journal of Nano Research (Vol. 73, pp. 139-160). Trans Tech Publications Ltd, 2022, ‏ https://doi.org/10.4028/p-h9do2u.
 
[30] A. K. Sharma, A. K. Tiwari, & A. R. Dixit, Rheological behaviour of nanofluids: a review. Renewable and Sustainable Energy Reviews, 53, 779-791, 2016,  https://doi.org/10.1016/j.rser.2015.09.033
 
[31] P. C. Mishra, S. Mukherjee, S. K. Nayak, & A. Panda, A brief review on viscosity of nanofluids. International nano letters, 4(4), 109-120, 2014, ‏ https://doi.org/10.1007/s40089-014-0126-3.
 
[32] H. Khodadadi, S. Aghakhani, H. Majd, R. Kalbasi, S. Wongwises, & M. Afrand, A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. International Journal of Heat and Mass Transfer, 127, 997-1012, 2018, https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.103.
 
[33] X. Hu, D. Yin, J. Xie, X. Chen, & C. Bai, Experimental study of viscosity characteristics of graphite/engine oil (5 W-40) nanofluids. Applied Nanoscience, 1-14, 2020, ‏ https://doi.org/10.1007/s13204-019-01240-w.
 
[34] H. Adun, D. Kavaz, M. Dagbasi, H. Umar, & I. Wole-Osho, An experimental investigation of Thermal conductivity and dynamic viscosity of Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid and development of machine learning model. Powder Technology, 394, 1121-1140, 2021, ‏ https://doi.org/10.1016/j.powtec.2021.09.039.
 
[35] L. Li, Y. Zhai, Y. Jin, J. Wang, H. Wang, & M. Ma, Stability, thermal performance and artificial neural network modeling of viscosity and Thermal conductivity of Al2O3-ethylene glycol nanofluids. Powder Technology, 363, 360-368, 2020, ‏ https://doi.org/10.1016/j.powtec.2020.01.006.
 
[36] M. H. Esfe, F. Zabihi, H. Rostamian, & S. Esfandeh, Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. Journal of Molecular Liquids,
 
 
[37] S. Zhang, Y. Li, Z. Xu, C. Liu, Z. Liu, Z. Ge, & L. Ma, Experimental investigation and intelligent modeling of Thermal conductivity of R141b based nanorefrigerants containing metallic oxide nanoparticles. Powder Technology, 2021, ‏ https://doi.org/10.1016/j.powtec.2021.10.019.
 
[38] M. Ghazvini, H. Maddah, R. Peymanfar, M. H. Ahmadi, & R. Kumar, Experimental evaluation and artificial neural network modeling of Thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Physica A: Statistical Mechanics and its Applications, 551, 124, 2020, https://doi.org/10.1016/j.physa.2019.124127.