مروری بر روش های شبیه سازی عددی جریان سیالات چندفازی در حضور سورفکتانت ها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی هوافضای دانشگاه صنعتی شریف، تهران، ایران

2 استاد، دانشکده مهندسی هوافضای دانشگاه صنعتی شریف، تهران، ایران

3 استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

4 استاد، گروه بیوفیزیک ماده نرم، دانشگاه صنعتی دامشتارت، آلمان

چکیده

در مقاله حاضر روش های شبیه سازی جریان چندفازی در حضور سورفکتانت ها  در 3 دسته مبتنی بر ناویر-استوکس،  تابع توزیع و مبتنی بر نیروهای بین مولکولی طبقه بندی و هر یک جداگانه تشریح شده است. روش های مبتنی بر ناویر-استوکس در دو دسته روش های ردیابی سطح مشترک و روش های صید سطح مشترک قرار می گیرند. روش های مبتنی بر نیروهای بین مولکولی به عنوان روش های ذره مبنا و با دیدگاه لاگرانژی در برخورد با میدان جریان عمل می کنند. مدل های پرکاربرد در روش های مبتنی بر تابع توزیع  نیز در انتها معرفی شده اند. گستره وسیعی از روش های عددی انتخاب های زیادی را پیش روی پژوهشگران قرار داده است. شناخت و درک قابلیت ها و جزئیات این روش ها کمک خواهد کرد تا با توجه به امکانات سخت افزاری، مناسب ترین روش عددی انتخاب و نتایج قابل اعتماد و مقرون به صرفه ای حاصل شود.

کلیدواژه‌ها

موضوعات


[1] Cui, Y., A computational fluid dynamics study of two-phase flows in the presence of surfactants, Doctor of Philosophy in Chemical Engineering, University of New Hampshire, Durham, England, (2011).
 
[2] Antonopoulou, E., Harlen, O. G., Rump, M., Segers, T., and Walkley, M. A., Effect of surfactants on jet break-up in drop-on-demand inkjet printing, Physics of Fluids, Vol. 33, No. 7, pp. 072112, DOI: https://doi.org/10.1063/5.0056803, (2021).
 
[3] Sanjeev, A., Jog, M. A., and Manglik, R. M., Computational simulation of surfactant-induced interfacial modification of droplet impact and heat transfer, in ILASS Americas, 21st Annual Conference on Liquid Atomization and Spray Systems, Orlando, FL, May 18-21, USA, (2008).
 
[4] Teng, C.-H., Chern, I-L., and Lai, M.-C., Simulating binary fluid-surfactant dynamics by a phase field model, Discrete and Continuous Dynamical Systems-B, Vol. 17, No. 4, pp. 1289-1307, DOI: 10.3934/dcdsb.2012.17.1289, (2012).
 
[5] Soligoa, G., Roccon, A., and Soldatia, A., Coalescence of surfactant-laden drops by Phase Field Method, Journal of Computational Physics, Vol. 376, pp. 1292-1311, DOI: https://doi.org/10.1016/j.jcp.2018.10.021, (2019).
 
[6] Goodarzi, F. and Zendehboudi, S., Effects of salt and surfactant on interfacial characteristics of water/Oil systems: Molecular dynamic simulations and Dissipative Particle Dynamics, Industrial & Engineering Chemistry Research, Vol. 58, pp. 8817-8834, DOI: https://doi.org/10.1021/acs.iecr.9b00504, (2019).
 
[7] Antonopoulou, E., The role of surfactants in jet break-up for inkjet printing, Doctor of Philosophy in Mechanical Engineering, University of Leeds, Leeds, United Kingdom, (2020).
 
[8] Haghnegahdar, M., Boden, S., and Hampel, S., Investigation of surfactant effect on the bubble shape and mass transfer in a milli-channel using high-resolution microfocus X-ray imaging, International Journal of Multiphase Flow, Vol. 87, pp. 184-196, DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2016.09.010, (2016).
 
[9] Xu, J.-J., Li, Z., Lowengrub, J., and Zhao, H., A level-set method for interfacial flows with surfactant, Journal of Computational Physics, Vol. 212, pp 590-616, DOI: https://doi.org/10.1016/j.jcp.2005.07.016, (2006).
 
[10] Tariq, A., Phase-Field simulation of surfactant adsorption onto flat and droplet interfaces, Master of Science in Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China, (2012).
 
[11] Bazhlekov, I., Numerical simulation of drop coalescence in the presence of film soluble surfactant, AIP Conference Proceedings, Vol. 1487, pp. 351-359, DOI: https://doi.org/10.1063/1.4758978, (2012).
 
[12] Hayashi, K., Motoki, Y., van der Linden, M. J. A., Deen, N. G., Hosokawa, S., and Tomiyama, A., Single contaminated drops falling through stagnant liquid at low Reynolds Numbers, Fluids, Vol. 7, No. 2, pp. 55-78, DOI: https://doi.org/10.3390/fluids7020055, (2021).
 
[13] Das, B., Kumar, B., Begum, W., Bhattarai, A., Mondal, M. H., and Saha, B., Comprehensive review on applications of surfactants in vaccine formulation, therapeutic and cosmetic pharmacy and prevention of pulmonary failure due to covid‑19, Chemistry Africa, Vol. 5, pp. 459–480, DOI: https://doi.org/10.1007/s42250-022-00345-0, (2022).
 
[14] Hao, Y., Jin, N., Wang, Q., Zhou, Y., Zhao, Y., Zhang, X., and Lü, H., Dynamics and controllability of droplet fusion under gas–liquid–liquid three-phase flow in a microfluidic reactor, RSC Adv., Vol. 10, pp. 14322-14330, DOI: https://doi.org/10.1039/D0RA00913J, (2020).
 
[15] Gao, G., Chen, F.-J., Zhou, L., Su, L., Xu, D., Xu, L., and Li, P., Control of lipid droplet fusion and growth by CIDE family proteins, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Vol. 1862, No. 10, pp. 1197-1204, DOI: https://doi.org/10.1016/j.bbalip.2017.06.009, (2017).
 
[16] Whitby, C. P.  and Bahuon, F., Droplet fusion in oil-in-water pickering emulsions, Front. Chem., Vol. 6, pp. 213-227, DOI: https://doi.org/10.3389/fchem.2018.00213/full, (2018).
 
[17] Urbina-Villalba, G., an algorithm for emulsion stability simulations: Account of flocculation, coalescence, surfactant adsorption and the process of ostwald ripening, Int. J. Mol. Sci., Vol. 10, pp. 761–804, DOI: https://doi.org/10.3390/ijms10030761, (2009).
 
[18] Posocco, P., Perazzo, A., Preziosi, V., Laurini, E., Pricla, S., and Guido, S., Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations, RSC Adv., Vol. 6, pp. 4723-4729, DOI: https://doi.org/10.1039/C5RA24262B, (2016).
 
[19] Zhang, X., Wu, J. –y., and Niu, J., PCM-in-water emulsion for solar thermal applications: The effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics, Solar Energy Materials and Solar Cells, Vol. 147, pp. 211-224, DOI: https://doi.org/10.1016/j.solmat.2015.12.022, (2016).
 
[20] Laurén, S., Evaluation of emulsion stability by interfacial rheology measurements, biolinscientific.com, Nov. 10, (2020): https://www.biolinscientific.com/blog/evaluation-of-emulsion-stability-by-interfacial-rheology measurements.
 
[21] Yu, X., Jiang, N., Miao, X., Zong, R, Sheng, Y., Li, C., and Lu, S., Formation of stable aqueous foams on the ethanol layer: Synergistic stabilization of fluorosurfactant and polymers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 591, pp. 124545, DOI: https://doi.org/10.1016/j.colsurfa.2020.124545, (2020).
 
[22] Gupta, D. Sarker, B., Thadikaran, K., John, V., Maldarelli, C., and John, G., Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals, Science Advances, Vol. 1, No. 5, pp. e1400265., DOI: 10.1126/sciadv.1400265, (2015).
 
[23] Kjeilen-Eilertsen, G., Jersak, J. M., and Westerlund, S., Developing Treatment Products for Increased Microbial Degradation of Petroleum Oil Spills across Open-Water Surfaces, Offshore Technology Conference, Houston, Texas, USA, 7–9 Feb. (2011).
 
[24] Steinhausen, M., Numerical simulation of single rising bubbles influenced by soluble surfactant in the spherical and ellipsoidal regime, Master of Science in Mathematics Mathematical Modelling and Analysis, Technical University Darmstadt, Darmstadt, Germany, (2018).
 
 [25] Druetta, P. and Picchioni, F., Simulation of surfactant oil recovery processes and the role of phase behaviour parameters, Energies, Vol. 12, pp. 983-1013, DOI: https://doi.org/10.3390/en12060983, (2019).
 
[26] Adila, A. S., Al-Shalabi, E. W., and Alameri, W., Geochemical investigation of hybrid Surfactant and low salinity/engineered water injections in carbonates: A numerical study, Journal of Petroleum Science and Engineering, Vol. 208, pp. 109367, DOI: https://doi.org/10.1016/j.petrol.2021.109367, (2022).
 
[27] Sabirgalieva, N., Skartlien, R., and Rojas-Solorzano, L., DPD simulation of surface wettability alteration by added water-soluble surfactant in the presence of indigenous oil-soluble surfactant, Chemical Engineering Transactions, Vol. 57, pp. 1489-1494, DOI: https://doi.org/10.3303/CET1757249, (2022).
 
[28] Jin, F., Gupta, N. R., and Stebe, K. J., The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant, Physics of Fluids, Vol. 18, pp. 022103, DOI: https://doi.org/10.1063/1.2172003, (2006).
 
[29] Young, Y.-N., Booty, M. R., Siegel, M., and Li, J., Influence of surfactant solubility on the deformation and breakup of a bubble or capillary jet in a viscous fluid, Physics of Fluids, Vol. 21, pp. 072105, DOI: https://doi.org/10.1063/1.3176462, (2009).
 
[30] Theodorakis, P. E., Müller, E A., Crasterb, R. V., and Matar, O. K., Modelling the superspreading of surfactant-laden droplets with computer simulation, Soft Matter, Vol. 11, pp. 9254-9261, DOI: https://doi.org/10.1039/C5SM02090E, (2015).
 
[31] Prisle, N. L., Asmi, A., Topping, D., Partanen, A.-I., Romakkaniemi, S., Dal Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K. E. J., McFiggans, G., and Kokkola, H., Surfactant effects in global simulations of cloud droplet activation, Geophysical Research Letters, Vol. 39, pp. L05802, DOI: https://doi.org/10.1029/2011GL050467, (2012).
 
[32] Yulianti, K., Gunawan, A. Y., Soewono, E., and Mucharam, L., Effects of an insoluble surfactant on the deformation of a falling drop towards a solid surface, Journal of Computer Science & Computational Mathematics, Vol. 3, No. 1, pp. 7-12, DOI: https://doi.org/10.20967/jcscm.2013.01.002, (2013).
[33] Dave, N. and Joshi, T., A concise review on surfactants and its significance, International Journal of Applied Chemistry, Vol. 13, No. 3, pp. 663-672, DOI: https://doi.org/10.37622/IJAC/13.3.2017.663-672, (2017).
 
[34] Hasegawa, T., Karasawa, M., and Narumi, T., Modeling and measurement of the dynamic surface tension of surfactant solutions, J. Fluids Eng., Vol. 130, No. 8, pp. 081505, DOI: https://doi.org/10.1115/1.2956597, (2008).
 
[35] Mukherjee, S., Berghout, P., and Van den Akker, H. E. A., A lattice boltzmann approach to surfactant-laden emulsions, American Institute of Chemical Engineers Journals, Vol. 65, No. 2, pp. 811-828, DOI: https://doi.org/ 10.1002/aic.16451, (2019).
 
[36] Venkataramani, V., Jin, F. and Stebe, K.J., Injected Drops with Surfactants: A Priori Scaling for Predicting Impeded Drop Necking. In The 2008, AIChE Annual Meeting, 16-21 November 2008, Philadelphia, Pennsylvania, USA, (2008).
 
[37] Palssona, S., Siegel, M., and Tornberg, A.-K., Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow, Journal of Computational Physics, Vol. 386, pp. 218-247, DOI: https://doi.org/10.1016/j.jcp.2018.12.044, (2019).
 
[38] Mukherjee, S., Zarghami, A., Haringa, C., Van As, K., Kenjeres, S., and Van den Akker, H. E. A., Simulating liquid droplets: A quantitative assessment of lattice Boltzmann and Volume of Fluid methods, International Journal of Heat and Fluid Flow, Vol. 70, pp. 59-78, DOI: https://doi.org/10.1016/j.ijheatfluidflow.2017.12.00, (2019).
 
[39] Wang, Q., Siegel, M., and Booty, M.R., Numerical simulation of drop and bubble dynamics with soluble surfactant, Physics of Fluids, Vol. 26, pp. 052102, DOI: https://doi.org/10.1063/1.4872174, (2014).
 
[40] Lai, M.-C., Tseng, Y.–H., and Huang, H., Numerical simulation of moving contact lines with surfactant by immersed boundary method, Commun. Comput. Phys., Vol. 8, No. 4, pp. 735-757, DOI: https://doi.org/10.4208/cicp.281009.120210a, (2010).
 
[41] Ganesan, S., Simulations of impinging droplets with surfactant-dependent dynamic contact angle, Journal of Computational Physics, Vol. 301, pp. 178–200, DOI: https://doi.org/10.1016/j.jcp.2015.08.026, (2015).
 
[42] Atasia, O., Legendre, D., Haut, B., Zenit, R., and Scheida, B., Lifetime of surface bubbles in surfactant solutions, Langmuir, Vol. 36, pp. 7749-7764, DOI: https://doi.org/10.1021/acs.langmuir.9b03597, (2020).
 
[43] Piedfert, A.R., Lalanne, B., Masbernat, O., and Risso, F., Numerical simulations of a rising drop with shape oscillations in the presence of surfactants, Physical Review Fluids, Vol. 3, No. 10, pp. 103605, DOI: https://doi.org/10.1103/PhysRevFluids.3.103605, (2018).
 
[44] Teigen, K.E., Lervåg, K.Y., and Munkejord, S.T., Sharp interface simulations of surfactant-covered drops in electric fields, V European Conference on Computational Fluid Dynamics ECCOMAS CFD (2010), Lisbon, Portugal,14-17 June (2010).
 
[45] Soligo, G., Roccon, A., and Soldati, A., Deformation of clean and surfactant-laden droplets in shear flow, Meccanica, Vol. 55, pp. 371–386, DOI: https://doi.org/10.1007/s11012-019-00990-9, (2020).
 
[46] Martin, D.W., and Blanchette, F., Simulations of surfactant effects on the dynamics of coalescing drops and bubbles, Physics of Fluids, Vol. 27, pp. 012103, DOI: https://doi.org/10.1063/1.4905917, (2015).
 
[47] Adami, S., Hu, X.Y., and Adams, N.A., 3D Drop deformation and breakup in simple shearflow considering the effect of insoluble surfactant, 5th international SPHERIC workshop, Manchester, UK, 23-25 June, (2010).
 
[48] Adami, S., Hu, X.Y., and Adams, N.A., A conservative SPH method for surfactant dynamics, Journal of Computational Physics, Vol. 229, pp. 1909–1926, DOI: https://doi.org/10.1016/j.jcp.2009.11.015, (2010).
 
[49] Drumright-Clarke, M.A. and Renardy, Y., The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia, Physics of Fluids, Vol. 16, No. 1, pp. 14-23, DOI: https://doi.org/ 10.1063/1.1628232, (2004).
 
[50] Theodorakis, P. E., Smith, E. R., Craster, R.V., Müller, E. A., and Matar, O. K., Molecular dynamics simulation of the superspreading of surfactant-laden droplets. A review, Fluids, Vol. 4, No. 176, pp. 1-23, DOI: https://doi.org/10.3390/fluids4040176, (2019).
 
[51] Khodadadi, Z., Mousavi-Khoshdel, S.M., Gharibi, H., Hashemianzadeh, S.M., and Javadian, S., Monte Carlo simulation of binary surfactant/contaminant/water systems, Journal of Molecular Graphics and Modelling, Vol. 36, pp. 20-29, DOI: https://doi.org/10.1016/j.jmgm.2012.03.003, (2012).
 
[52] Khodadadi, Z., Mousavi-Khoshdel, S.M., and Gharibi, H., Monte Carlo simulation and theoretical approach to mixed surfactant system consisting gemini and conventional surfactants in aqueous solutions, Fluid Phase Equilibria, Vol. 406, No. 25, pp. 175-180, DOI: https://doi.org/10.1016/j.fluid.2015.07.051, (2015).
 
[53] Zapata, C.P., Casanova, H., and Restrepo, J., Monte Carlo simulation of the self-assembly process of nonionic surfactants (type HXTY) considering second-neighbor interaction between surfactant molecules, Progr. Colloid Polym. Sci., Vol. 128, pp. 146-150, DOI: https://doi.org/10.1007/b97118, (2004).
 
[54] Masubuchi, Y., Molecular Modeling for Polymer Rheology, Reference Module in Materials Science and Materials Engineering, DOI: https://doi.org/ 10.1016/B978-0-12-803581-8.02178-0, Elsevier Inc., (2016).
 
[55] Zhou, J., and Ranjith, P.G., Self-assembly and viscosity changes of binary surfactant solutions: A molecular dynamics study, Journal of Colloid and Interface Science, Vol. 585, pp. 250-257, DOI: https://doi.org/10.1016/j.jcis.2020.11.022, (2021).
 
[56] Sudhakar, T., and Das, A.K., Evolution of Multiphase Lattice Boltzmann Method: A Review, J. Inst. Eng. India Ser. C, Vol. 101, pp. 711–719, DOI: https://doi.org/10.1007/s40032-020-00600-8, (2020).
 
[57] Wei, B., Houa, J., Sukop, M.C., and Liu, H., Pore scale study of amphiphilic fluids flow using the Lattice Boltzmann model, International Journal of Heat and Mass Transfer, Vol. 139, pp. 725-735, DOI: https://doi.org/ 10.1016/j.ijheatmasstransfer.2019.05.056, (2019).
 
[58] Hasan, W. and Farhat, H., Hybrid thermal lattice Boltzmann model to study the transportation ofsurfactants contaminated emulsions in parabolic flows, Journal of Petroleum Science and Engineering, Vol. 166, pp. 85-93, DOI: https://doi.org/10.1016/j.petrol.2018.03.005, (2018).
 
[59] Zhang, J., Liu, H., and Ba, Y., Numerical study of droplet dynamics on a solid surface with insoluble surfactants, Langmuir, Vol. 166, pp. 85-93, DOI: https://doi.org/10.1021/acs.langmuir.9b00495, (2018).
 
[60] Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G., and Zhang, Y., A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants, J. Fluid Mech., Vol. 837, pp. 381-412, DOI: https://doi.org/10.1017/jfm.2017.859, (2018).
 
[61] Choi, S.B., Kondaraju, S., and Lee, J.S., Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method, Biomicrofluidics, Vol. 8, pp. 024104, DOI: https://doi.org/10.1063/1.4868368, (2014).
 
[62] Hasan, W., and Farhat, H., Alhilo, A., and Tamimi, L., Hybrid quasi-steady thermal lattice boltzmann model for studying the behavior of oil in water emulsions used in machining tool cooling and lubrication, International Scholarly and Scientific Research & Innovation, Vol. 11, No. 6, pp. 1246-1252, DOI: https://doi.org/10.5281/zenodo.1131445, (2017).
 
[63] Farhat, H., Celiker, F., Singh, T., and Lee, J.S., A hybrid lattice Boltzmann model for surfactant-covered droplets, Soft Matter, Vol. 7, No. 6, pp. 1968-1986, DOI:https://doi.org/10.1039/C0SM00569J, (2011).
 
[64] Hasan, W., Surfactants, thermal and surface energy effects on emulsions’ transport properties: A study using lattice boltzmann method, Doctor of Philosophy in Mechanical Engineering, Wayne State University, Detroit, USA, (2018).
 
[65] Furtado, K. and Skartlien, R., Derivation and thermodynamics of a lattice Boltzmann model with soluble amphiphilic surfactant, Physical Review E, Vol. 81, pp. 066704, DOI: https://doi.org/10.1103/PhysRevE.81.066704, (2010).
 
[66] Choi, J.S., A multiphase lattice boltzmann model for colloidal particles and surfactant in an evaporating droplet with a pinned contact line, Master of Science in Mehcanical Engineering, Graduate School of UNIST, Ulsan, Republic of Korea, (2018).
 
[67] Skartlien, R., Furtado, K., Sollum, E., Meakina, P., and Kralov, I., Lattice–Boltzmann simulations of dynamic interfacial tension due to soluble amphiphilic surfactant, Physica A, Vol. 390, pp. 2291-2302, DOI: https://doi.org/10.1016/j.physa.2011.02.022, (2011).
 
[68] Liu, H. and Zhang, Y., Phase-field modeling droplet dynamics with soluble surfactants, Journal of Computational Physics, Vol. 229, pp. 9166-9187, DOI: https://doi.org/10.1016/j.jcp.2010.08.031, (2010).
 
[69] van der Sman R.G.M. and Meinders, M.B.J., Analysis of improved Lattice Boltzmann phase field method for soluble surfactants, Computer Physics Communications, Vol. 199, pp. 12-21, DOI: https://doi.org/10.1016/j.cpc.2015.10.002, (2016).
 
[70] Zong, Y., Zhang, C., Liang, H., Wang, L., and Xu, J., Modeling surfactant-laden droplet dynamics by lattice Boltzmann method, Phys. Fluids, Vol. 32, pp. 122105, DOI: https://doi.org/10.1063/5.0028554, (2020).
 
[71] Kian Far, E., Gorakifard, M., and Fattahi, E., Multiphase phase-field lattice boltzmann method for simulation of soluble surfactants, Symmetry, Vol. 13, No. 6 pp. 10-19, DOI: https://doi.org/10.3390/sym13061019, (2021).
 
[72] Shi, Y., Tang, G.H., Cheng, L.H., and Shuang, H.Q., An improve d phase-field-base d lattice Boltzmann model for droplet dynamics with soluble surfactant, Computers and Fluids, Vol. 179, pp. 508-520, DOI: https://doi.org/10.1016/j.compfluid.2018.11.018, (2019).