انتقال حرارت ترکیبی جابجایی و تشعشعی در میله سوخت داغ قلب راکتور هسته ‌ای

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه صنعتی ارومیه، ارومیه، ایران.

2 دانشیار،دانشکده مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.

چکیده

در این مقاله به بررسی انتقال حرارت ترکیبی جابجایی همراه با تشعشع در میله­ سوخت داغ استوانه ‌ای شکل قلب یک راکتور هسته ‌ای تحت فشار مانند راکتور بوشهر پرداخته شده است. به طور کلی در آنالیز حرارتی یک میله سوخت، توجه ویژه‌ ای به توزیع درجه حرارت در اجزاء تشکیل دهنده میله سوخت و همچنین تأثیر جریان سیال اطراف آن بر میزان برداشت حرارت معطوف می گردد. لذا در این مطالعه با استفاده از معادلات انتقال حرارت در سوخت و سیال مجاور آن، میزان شدت انتقال حرارت جابجایی و تابشی و تأثیر پارامترهای مختلف مورد بررسی قرار گرفته است. در این مدل‌ سازی از فرض محیط خاکستری برای مدل ‌سازی تشعشع در فضای بین سوخت و غلاف و همچنین در نظر گرفتن دیواره ‌های مات استفاده شده است و مدل تشعشع به کار گرفته شده مدل جهات مجزا (DOM) می ‌باشد. برای این شبیه ‌سازی از نرم‌ افزار انسیس فلوئنت (تحلیل عددی) بهره گرفته شده است و نتایج حاصل از این شبیه‌ سازی با نتایج مراجع موجود مقایسه و تاثیر انتقال حرارت تشعشعی در میله سوخت هسته‌ ای بررسی شده است.

کلیدواژه‌ها

موضوعات


[1] Marakis, J., Papapavlou, C., Kakaras, E., A parametric study of radiative heat transfer in pulverised coal furnaces, International Journal of Heat and Mass Transfer, Vol. 43 (16),  pp. 2961–2971, DOI: https://doi.org/10.1016/S0017-9310(99)00347-6, (2000).  
[2] Spinnler, M., Winter, E.R., Viskanta, R., Studies on high-temperatur e multilayer thermal insulations, International Journal of Heat and Mass Transfer, Vol. 47 (6–7), pp. 1305–1312, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.012, (2004).
[3] Mezrhab, A., Bouali, H., Amaoui, H., Bouzidi, M., Computation of combined natural-convection and radiation heat-transfer in a cavity having a square body at its center, Appl. Energy, Vol. 83, pp. 1004–1023, DOI:https://doi.org/10.1016/j.apenergy.2005.09.006, (2006).
[4] Vivek, V., Sharma, A.K., Balaji, C., Interaction effects between laminar natural convection and surface radiation in tilted square and shallow enclosures, Int. J. Therm. Sci., Vol. 60, pp. 70–84, DOI: https://doi.org/10.1016/j.ijthermalsci.2012.04.021, (2012).
[5] Martyushev, G., Sheremet, A., Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source, International Journal of Heat and Mass Transfer, Vol. 73, pp. 340–353, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.009, (2014).
[6]  Menguc, MP., Viskanta, R., Radiation heat transfer in combustion systems, Prog Energy Combust Sci., Vol. 13(2), pp. 97–160, DOI: https://doi.org/10.1016/0360-1285(87)90008-6 (1987).
[7] Yang, K.T., Numerical modeling of natural convection–radiation interactions in enclosures, Int. Heat Transfer Conf. , Vol. 2, pp. 131–140, (1986).
[8]  Anil Kumar Sharma, K., Velusamy, C., Balaji, S.P., Conjugate turbulent natural convection with surface radiation in air filled rectangular enclosures, International Journal of Heat and Mass Transfer, Vol. 50, pp. 625–639, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.022, (2007).
[9]  Modest, M.F., Mazumder, S., Chapter 21 - Radiation Combined with Conduction and Convection, Radiative Heat Transfer (Fourth Edition), Academic Press, pp. 775-817, DOI: https://doi.org/10.1016/C2018-0-03206-5, (2022).
[10] Ajibade, O.A., Jha, B.K., Jibril, H.M., Bichi, Y.A., Effects of dynamic viscosity and nonlinear thermal radiation on free convective flow through a vertical porous channel, International Journal of Thermofluids, Vol. 9, pp. 501-520, DOI: https://doi.org/10.1016/j.ijft.2020.100062, (2021).
[11] Singh, A.K., Paul, T., Transient natural convection between two vertical walls heated/cooled asymmetrically, International Journal of Applied Mechanics and Engineering, Vol. 11,  pp. 143-154, (2006).
[12] Mehta, R., Jangid, S., Kumar, M., Comparative mathematical study of MHD mixed convection flow of nano-fluids in the existence of porous media, heat generation and radiation through upstanding equidistant plates, Materials Today: Proceedings, Vol. 46, pp. 2240-2248, DOI: https://doi.org/10.1016/j.matpr.2021.03.577, (2021).
[13]  Lakhi, M., Safavinejad, A., Numerical investigation of combined heat transfer (mixed convection-radiation) in 2D channel using the LBM, International Communications in Heat and Mass Transfer, Vol. 126, pp. 201-222, DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105368, (2021).
[14]   Sakly, A., Ben Nejma, F., Heat and mass transfer of combined forced convection and thermal radiation within a channel: Entropy generation analysis, Applied Thermal Engineering, Vol. 171, pp. 114-132, DOI: https://doi.org/10.1016/j.applthermaleng.2020.114903, (2020).
[15] Javadzadegan, A., Motaharpour, S.H., Moshfegh, A., AliAkbari, O., Hassanzadeh Afrouzi H., Toghraie, D., Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls, Physica A: Statistical Mechanics and its Applications, Vol. 526, pp. 119-135, DOI: https://doi.org/10.1016/j.physa.2019.121066, (2019).
[16] Mandal, S.K., Arnab, D., Dipak, S., Mixed convective heat transfer with surface radiation in a rectangular channel with heat sources in presence of heat spreader, Thermal Science and Engineering Progress, Vol. 14, pp. 23-35, DOI: https://doi.org/10.1016/j.tsep.2019.100423, (2019).
[17] Prakash, O., Singh, S.N., Experimental and numerical study of mixed convection with surface radiation heat transfer in an air-filled ventilated cavity, International Journal of Thermal Sciences, Vol. 171, pp. 59-72, DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107169, (2022).
[18]  Akinshilo, A.T., Mixed convective heat transfer analysis of MHD fluid flowing through an electrically conducting and non-conducting walls of a vertical micro-channel considering radiation effect, Applied Thermal Engineering, Vol. 156, pp. 506-513, DOI: https://doi.org/10.1016/j.applthermaleng.2019.04.100, (2019).
[19] Hamdy H., Shafey, N.Y., 3D study of convection-radiation heat transfer of electronic chip inside enclosure cooled by heat sink, International Journal of Thermal Sciences, Vol. 12, pp. 106-115, DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106585, (2021).
[20] Nee, A., Hybrid lattice Boltzmann––Finite difference formulation for combined heat transfer problems by 3D natural convection and surface thermal radiation, International Journal of Mechanical Sciences, Vol. 173, pp. 202-209, DOI: https://doi.org/10.1016/j.ijmecsci.2020.105447, (2020).
[21] Mikhailenko, S.A., Sheremet, M.A., Natural convection combined with surface radiation in a rotating cavity with an element of variable volumetric heat generation, Energy, Vol. 210, pp. 118-128, DOI: https://doi.org/10.1016/j.energy.2020.118543, (2020).
[22] ForuzanNia, M., Ansari, A.B., Gandjalikhan S.A., Transient combined volumetric radiation and free convection in a chamber with a hollow heat-generating solid body, International Communications in Heat and Mass Transfer, Vol. 119, pp. 104-110, DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104937, (2020).
[23] Han, C.Y., Beak, S.W., Natural Convection Phenomena Affected By Radiation In Concentric And Eccentric Horizontal Cylindrical Annuli, J. Heat Transfer. Part A, Vol. 36, pp. 473-488, (2011).
[24] Dehgoshayi, A., Ganghi, D.,Numerical investigation of combined heat transfer of convection and radiation inside a closed and horizontal chamber, The third national conference of knowledge and technology of mechanical and electrical engineering of Iran, (2017), (in persian).
[25] Rahmati, A.R., Karimpoor, R.,Numerical simulation of natural convection heat transfer with radiation in a blocked square enclosure,The third national conference of knowledge and technology of mechanical and electrical engineering of Iran, (2015), (in persian).
[26] Dorosti. Gh., Marefat, M., Analysis of combined natural convection and radiation heat transfer in finned vertical chambers, Iranian Mechanical Engineering Research Journal, Tehran, (2009), (in persian).
[27]. Chui, E. H., Raithby, G.D.,  Computation Of Radiant Heat Transfer On A Nonthogonal Mesh Using Finite-Volume Method, Number. Heat Transfer. Part B. Vol. 23. pp. 269-228, DOI: https://doi.org/10.1080/10407799308914901, (2011).
[28]. Chai, J. C., Lee, H. S., Finite-Volume Method For Radiation Heat Transfer, J. Thermophys., Vol. 8, pp. 419-425, DOI: https://doi.org/10.2514/3.559, (2014).
[29]. Kuehn, T. H., Goldstein, R. J., An Experimental And Theoretical Study Of Natural Convection In The Annulus Between Horizontal Concentric Cylinders, J. Fluid Mech., Vol. 100. Pp. 695-719, DOI:https://doi.org/10.1017/S0022112076002012, (2010).
[30]. Kuehn, T. H., Goldstein, R. J., An Experimental And Theoretical Study Of Natural Convection Heat Transfer In Concentric And Eccentric Horizontal Cylindrical Annuli, J. Heat Transfer., Vol. 100, pp, 635-640, DOI: https://doi.org/10.1016/0017-9310(80)90071-X,  (2009).
[31]. Cho, C. H., Chang, K. S., Numerical Simulation Of Natural Convection In Concentric And Eccentric Horizontal Cylindrical Annuli. J. Heat Transfer, Vol, 104, pp, 624-630, DOI: https://doi.org/10.1115/1.3245177, (2011).
[32]  Wang, Q., Chen, X., Yi-chong, X., Accident like the Fukushima unlikely in a country with effective nuclear regulation: literature review and proposed guidelines, Renew. Sustain. Energy Rev, Vol. 17, pp. 126-146, DOI: https://doi.org/10.1016/j.rser.2012.09.012, (2013).
[33] Mochizuki, H., Analysis of the chernobyl accident from 1:19:00 to the first power excursion, Nucl. Eng. Des., Vol. 237, pp. 300-307, DOI: https://doi.org/10.1016/j.nucengdes.2006.07.002, (2007).
[34] U.S. Nrc, Backgrounder on the three mile island accident, United State Nucl. Regul. Comm., pp. 1-7,  (2108).
[35] IAEA, Thermophysical properties database of materials for light water reactors and heavy water reactors, Int. Atom. Energy Agency, (2006). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/37/118/37118326.pdf.
[36] IAEA, Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions, Int. Atom. Energy Agency, (2007). https://www.taodocs.com/p-50010983.html.
[37] Wilhelm, P., Jobst, M., Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Kerntechnik, Vol. 81, pp. 134-137,DOI: https://doi.org/10.3139/124.110691, (2016).
[38] Aounallah, Y., Simulation of HALDEN IFA-650 loss-of-coolant accidents tests with TRACE, Kerntechnik, Vol. 77, pp. 316-323, DOI: https://doi.org/10.3139/124.110214, (2012).
[39] Horhoianu, G., Serbanel, M., Diaconu, C., Investigation of the Ru-43LV fuel behaviour under LOCA conditions in a CANDU reactor, Kerntechnik, Vol. 77, pp. 356-364, DOI: https://doi.org/10.3139/124.110210, (2012).
[40]  Faghihi, F., Mirvakili, S.M., Safaei, S., and Bagheri, S., Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle, Progress in Nuclear Energy, Vol. 87, No. 6, pp. 39-46, DOI: https://doi.org/10.1016/j.pnucene.2015.10.020, (2016).
[41] Sadeghiazad, M.M., Choobdar, F., Investigation of thermal-hydraulic transient analysis of hot fuel rod in the pump failure accident, International Journal of Nuclear Energy Science and Technology, Vol. 14, pp. 264-279, DOI: https://doi.org/10.1504/IJNEST.2020.115925, (2021).
 
 
 
 
 
 
 
 
 
 
 
نشریه مهندسی مکانیک                                                                                                  سال سی و دوم، شماره یکم، فروردین و اردیبهشت 1402
 
[42] Freile, R., Tano, M., Balestra, P., Improved natural convection heat transfer correlations for reactor cavity cooling systems of high-temperature gas-cooled reactors: from computational fluid dynamics to Pronghorn, Annals of Nuclear Energy, Vol. 163, pp. 108-116, DOI: https://doi.org/10.1016/j.anucene.2021.108547, (2021).
[43] Hanisch, T., Zedler, P., Hurtado, A., Numerical and experimental analysis of flow and heat transfer in a fuel assembly mock-up with transverse flow above the rods, International Journal of Heat and Fluid Flow, Vol. 89, pp. 95-103, DOI: https://doi.org/10.1016/j.ijheatfluidflow.2021.108809, (2021).
[44] Tikadar, A., Najeeb, U., Paul, T. C., Oudah, S. K., Salman, A. S., Abir, A. M., Carrilho, L. A., Khan, J. A., Numerical investigation of heat transfer and pressure drop in nuclear fuel rod with three-dimensional surface roughness, International Journal of Heat and Mass Transfer, Vol. 126, pp. 493-507, DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.141, (2018).
[45] Russia Federal Agency on Nuclear Energy, Bushehr NPP FINAL SAFETY ANALYSIS REPORT, Moscow, (2005).
[46] Sadeghiazad, M.M., Choobdar, F., Investigation of heat transfer in the hot fuel rod of the nuclear power reactor, The scientific journal of the Iranian Society of Mechanical Engineers,Vol. 31, pp. 61-74, DOI: 10.30506/mmep.2022.563608.2058, (2022), (in persian).