مدل ‌سازی مسیریابی بهینه ی میکرو/نانو ذرات در فاز دوم منیپولیشن با استفاده از تصاویر میکروسکوپ نیروی اتمی

نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

2 استادیار، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

3 دانشیار، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

4 دانشیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

چکیده

میکروسکوپ نیروی اتمی یکی از ابزارهای جدید کاربردی در حوزه‌ی نانوتکنولوژی است که در نانومنیپولیشن مورد استفاده قرار می گیرد. هدف اصلی از این پژوهش مدل‌ سازی مسیریابی بهینه‌ ی میکرو/نانو ذرات در فاز دوم منیپولیشن و حرکت ذرات با استفاده از تصاویر میکروسکوپ نیروی اتمی می‌ باشد. بدین منظور در این پژوهش، ابتدا به انجام کار تجربی و تصویربرداری از بافت سلولی سرطانی سر و گردن، با استفاده از میکروسکوپ نیروی اتمی پرداخته‌ شده است. پس ‌از آن، این تصاویر مورد بررسی و تجزیه‌ و تحلیل قرار گرفته و سپس با استفاده از الگوریتم ‌های مختلف مسیریابی، شامل الگوریتم بهینه‌ سازی ازدحام ذرات، الگوریتم ژنتیک و الگوریتم تبرید شبیه‌ سازی شده، مسیر بهینه جهت انجام فاز دوم نانومنیپولیشن، استخراج ‌شده است. نتایج به دست آمده حاکی از بهینه شدن مسیر در فاز دوم نانومنیپولیشن جهت کاربرد در جابه جایی ذرات است. 

کلیدواژه‌ها

موضوعات


[1] Tzes, A., Yurkovichm, S., A sensitivity analysis approach to control of manipulators with unknown load, In Proceedings, 1987 IEEE International Conference on Robotics and Automation, Vol. 4, pp. 496-502, DOI: 10.1109/ROBOT.1987.1088054, (1987).
 
[2] Sitti, M., Survey of nanomanipulation systems, In Proceedings of the 2001 1st IEEE Conference on Nanotechnology, IEEE-NANO 2001 (Cat. No. 01EX516), pp. 75-80, DOI: 10.1109/NANO.2001.966397, (2001).
 
[3] Chang, W. J., Te, H. F., Huann, M. Ch., Effect of interactive damping on sensitivity of vibration modes of rectangular AFM cantilevers, Physics Letters A, Vol. 312, No. 3-4, pp. 158-165, DOI: 10.1016/S0375-9601(03)00620-0, (2003).
 
[4] Wu, T. S., Chang, W. J., Hsu, J. Ch., Effect of tip length and normal and lateral contact stiffness on the flexural vibration responses of atomic force microscope cantilevers, Microelectronic Engineering, Vol. 71, No. 1, pp. 15-20, DOI: 10.1016/j.mee.2003.08.009, (2004).
 
[5] Korayem, M. H., Zakeri, M., The effect of off-end tip distance on the nanomanipulation based on rectangular and V-shape cantilevered AFMs, The International Journal of Advanced Manufacturing Technology, Vol. 50, No. 5, pp. 579-589, DOI: 10.1007/s00170-010-2539-0, (2010).
 
[6] Korayem, M. H., Amanati, A., Sensitivity analysis of load carrying capacity in AFM-based manipulation, Procedia-Social and Behavioral Sciences, Vol. 2, No. 6, pp. 7692-7693, DOI: 10.1016/j.sbspro.2010.05.182, (2010).
 
[7] Korayem, M. H., Taheri, M., Ghahnaviyeh, S. D., Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles, Modern Physics Letters B, Vol. 29, No. 22, pp. 1550123:1-23, DOI: 10.1142/S0217984915501237, (2015).
 
[8] Zhao, W., Xu, K., Qian, X., Wang, R., Tip based nanomanipulation through successive directional push, Journal of Manufacturing Science and Engineering, Vol. 132, No. 3, pp. 030909:1-9, DOI: 10.1115/1.4001676, (2010).
 
[9] Korayem, M. H., Zafari, S., Amanati, A., Damircheli,  M., Ebra himi, N., Analysis and control of micro-cantilever in dynam ic mode AFM, The International Journal of Advanced Manufacturing Technology, Vol. 50, No. 9, pp. 979–990, DOI: 10.1007/s00170-010-2588-4, (2010).
 
[10] Lee, H. L., Chang, W. J., Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory, Microelectronic Engineering, Vol. 88, No. 11, pp. 3214-3218, DOI: 10.1007/s00170-010-2588-4, (2011).
 
[11] Korayem, M. H., Kavousi, A., Ebrahimi, N., Dynamic analysis of tapping-mode AFM considering capillary force interactions, Scientia Iranica, Vol. 18, No. 1, pp. 121-129, DOI: 10.1016/j.scient.2011.03.014, (2011).
 
[12] Korayem, M. H., Rastegar, Z., Taheri, M., Sensitivity analysis of nano-contact mechanics models in manipulation of biological cell, Nanoscience and Nanotechnology, Vol. 2, No. 3, pp. 49-56, DOI: 10.5923/j.nn.20120203.02, (2012).
 
[13] Lee, H. L., Chang, W. J., Sensitivity analysis of a cracked atomic force microscope cantilever, Japanese Journal of Applied Physics, Vol. 51, No. 3, pp. 035202:1-4, DOI: 10.1143/JJAP.51.035202, (2012).
 
[14] Korayem, M. H., Noroozi, M., Daeinabi, Kh., Control of an atomic force microscopy probe during nano-manipulation via the sliding mode method. Scientia Iranica, Vol. 19, No. 5, pp. 1346-1353, DOI: 10.1016/j.scient.2012.06.026, (2012).
 
[15] Korayem, M. H., Omidi, E., Robust controlled manipulation of nanoparticles using atomic force microscope. Micro & Nano Letters, Vol. 7, No. 9, pp. 927-931, DOI: 10.1049/mnl.2012.0293, (2012).
 
[16] Korayem, M. H., Ghaderi, R., Vibration response of an atomic force microscopy piezoelectrically actuated microcantilever in liquid environment, Micro & Nano Letters, Vol. 8, No. 5, pp. 229-233, DOI: 10.1049/mnl.2012.0882, (2013).
 
[17] Damircheli, M., Korayem, M. H., Sensitivity of higher mode of rectangular atomic force microscope to surface stiffness in air environment, Micro & Nano Letters, Vol. 8, No. 12, pp. 877-881, DOI: 10.1049/mnl.2012.0882, (2013).
 
[18] Korayem, M. H., Taheri, M., Rastegar, Z., Sobol method application in sensitivity analysis of LuGre friction model during 2D manipulation, Scientia Iranica. Transaction B, Mechanical Engineering, Vol. 21, No. 4, pp. 1461- 1469, (2014).
 
[19] Korayem, A. H., Hoshiar, A. K., Korayem, M. H. Algorithm for determining the cantilever load carrying capacity in the 3D manipulation of nanoparticles with geometrical constraints based on FEM simulations, Robotica, Vol. 34, No. 9, pp. 2087-2104, DOI: 10.1017/S0263574714002756, (2016).
 
[20] Korayem, M. H., Khaksar, H., Taheri, M., Simulating the impact between particles with applications in nanotechnology fields (identification of properties and manipulation), International Nano Letters, Vol. 4, No. 4, pp. 121-127, DOI: 10.1007/s40089-014-0127-2, (2014).
 
[21] Korayem, A. H., Taheri, M., Korayem, M. H., Dynamic Modeling and simulation of nano particle motion in different environments using AFM nano–robot, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 294-300, DOR: 20.1001.1.10275940.1394.15.1.12.8, (2015).
 
[22] Korayem, M. H., Khaksar, H., Hefzabad, R. N., Taheri, M., Simulation of soft bacteria contact to be applied in nanomanipulation, Modares Mechanical Engineering, Vol. 14, No. 14, pp. 227-234, DOR: 20.1001.1.10275940.1393.14.14.14.9, (2015).
 
[23] Korayem, M. H., Ghahnaviyeh, S. D., Ghasemi, M., Taheri, M., Effect of different geometrical parameters of atomic force microscope cantilevers in critical force and time based on manipulation with applying EFAST sensitivity analyses, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 310-316, DOR: 20.1001.1.10275940.1394.15.1.26.2, (2015).
 
[24] Korayem, A. H., Korayem, M. H., Taheri, M., Robust controlled manipulation of nanoparticles using the AFM nanorobot probe, Arabian Journal for Science and Engineering, Vol. 40, No. 9, pp. 2685-2699, DOI: 10.1007/s13369-015-1730-x, (2015).
 
[25] Li, G., Wang, W., Wang, Y., Yuan, Sh., Yang, W., Xi, N., Liu, L., Nano-manipulation based on real-time compressive tracking, IEEE Transactions on Nanotechnology, Vol. 14, No. 5, pp. 837-846, DOI: 10.1109/TNANO.2015.2449871, (2015).
 
[26] Korayem, M. H., Taheri, M., Korayem, A. H., Rastegar, Z., Sensitivity analysis of coulomb and HK friction models in 2D AFM-Based Nano-Manipulation: Sobol method, International Journal of Nanoscience and Nanotechnology, Vol. 11, No. 1, pp. 23-31, (2015).
 
[27] Taheri, M., Mirzaluo, M., Experimental Extraction of Young's Modulus of MCF-7 Breast Cancer Cell Using Spherical Contact Models, Amirkabir Journal of Mechanical Engineering, Vol. 53, No. 12, pp. 5769-5784, DOI: 10.22060/mej.2021.19993.7149, (2022).
 
[28] Taheri, M. Application of atomic force microscopy in critical force and critical time extraction of 2D manipulation for gastric cancer tissue with different friction models, Nanoscale, Vol. 9, No. 1, pp. 136-145, DOR: 20.1001.1.24235628.1401.9.1.14.0, (2022).
 
[29] Taheri, M. Investigation of the effect of different friction models on experimental extraction of 3D nanomanipulation force and critical time of colon cancer tissue, Amirkabir Journal of Mechanical Engineering, Vol. 54, No. 4, pp. 791-804, DOI: 10.22060/mej.2021.20300.7210, (2022).
 
[30] Khalili, M., Taheri, M., Bathaee, S. H., Shakeri, F. Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics, Mechanic of Advanced and Smart Materials, Vol. 1, No. 2, pp. 155-174, DOI: 10.52547/masm.1.2.155, (2022).