محاسبه ‌ی مدول یانگ سلول سرطانی سر و گردن در طی فرایند نانومنیپولیشن مبتنی بر میکروسکوپ نیروی اتمی

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی ساخت و تولید، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

2 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

3 کارشناسی، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه اراک، اراک

4 استادیار، مهندسی مکانیک، مجتمع مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

چکیده

سرطان سر و گردن اغلب دهان، گلو و بینی را درگیر می‌کند. این نوع سرطان با روش ‌های درمانی همچون جراحی، رادیوتراپی و شیمی درمانی سبب آسیب رساندن به سایر سلول‌ ها و عوارضی همچون آسیب ‌های شنوایی و چشایی می‌شود. به‌ منظور رفع این محدودیت در درمان بیماری، مطالعاتی در حوزه‌ی نانو صورت گرفته است. برخی از این مطالعات در خصوص استفاده از نانوذرات به‌ عنوان حامل ‌های دارویی، شناخت ساختار سلول سرطانی و بررسی خواص مکانیکی صورت گرفته است. در این مطالعه به ‌منظور بهبود درمان و تشخیص زودهنگام این نوع سرطان، به تخمین مدول یانگ سلول سرطانی سر و گردن با استفاده از فرایند نانومنیپولیشن پرداخته شده است. تصاویر توپوگرافی و نمودارهای تجربی مورد استفاده از طریق کاوش سلول سرطانی سر و گردن توسط میکروسکوپ نیروی اتمی استخراج شده است. نوآوری اصلی این پژوهش در استفاده از مدل ‌های تماسی جی‌ کا آر، ام دی و تاتارا بوده است. هدف اصلی پژوهش، رسم نمودارهای عمق نفوذ برحسب نیروی اعمالی، جهت تخمین مدول یانگ بافت سر و گردن است. با مقایسه‌ نتایج تئوری و تجربی، مقدار 12 کیلو پاسکال با در نظرگرفتن مدل تماسی جی کا آر و مقدار 11 کیلو پاسکال با مدل تماسی تاتارا به ‌عنوان مقادیر مدول یانگ سلول سرطانی سر و گردن تخمین زده شده‌ اند.

کلیدواژه‌ها

موضوعات


[1] Rahrotaban, S., Jolehar, M., Khatibi, A., Tissue Eosinophilia in Head and Neck Squamous Cell Carcinoma, J Res Dent Sci., Vol. 11, No 2, pp. 96-102, (2012).
 
[2] Pfster, D.G., Spencer, S., Brizel, D.M., Burtness, B., Busse, P.M., Caudell, J.J., Cmelak, A.J., Colevas, A.D., Dunphy, F., Eisele, Head and neck cancers, version 1.2015: featured updates to the NCCN guidelines, Journal of the National Comprehensive Cancer Network: JNCCN, Vol. 13, No. 7, pp. 847-856, (2015).
 
[3] Moshref javadi, M., Soleimani, N., Therapeutic and anticancer effects of nanoparticles, RJMS, Vol. 27, No. 10, pp. 115-134, (2020).
 
[4] Salehzadeh, M., Norouzian, P., Abbasalipourkabir, R., The use of nanoparticles in diagnosis and treatment of breast cancer: A review, Pajouhan Scientific Journal, Vol. 13, No. 2, pp. 1-12, (2015).
 
[5] Parsa, N., Molecular and cellular basis of human cancer, Journal of cell & tissue, Vol. 2, No. 4, pp. 365-376, (2012).
 
[6] Noruzshamsian, O., Mohseni, A., Mojaddam, M., Design of a micro-separator for Circulating Tumor Cells (CTCs) from blood flow using hybrid pinched flow fractionation (PFF) and dielectrophoresis methods, Journal of Solid and Fluid Mechanics, Vol. 10, No. 1, pp. 281-296, (2020).
 
[7] Evans, M., Beasley, M., Target delineation for postoperative treatment of head and neck cancer, Oral oncology, Vol. 86, pp. 288-295, (2018).
[8] Andakhshideh, A., Maleki, S., Marashi, S.S., Investigation of nonlinear pull-in phenomena in functionally graded micro-beams under electrostatic excitation, Journal of Solid and Fluid Mechanics, Vol. 8, No. 3, pp. 137-151, (2018).
 
[9] Shinato, K.W., Huang, F., Jin, Y., Principle and application of atomic force microscopy (AFM) for nanoscale investigation of metal corrosion, Corrosion Reviews, Vol. 38, No. 5, pp. 423-432, (2020).
 
[10] Attar, A., Tahmasebipour, M., Dehghan, M., Investigation of the effect of geometrical parameters on the out-of-plane displacement of a T-shaped piezoelectric microcantilever, Journal of Solid and Fluid Mechanics, Vol. 8, No. 4, pp. 1-9, (2018).
 
[11] Sharma, S., Rasool, H.I., Palanisamy, V., Mathisen, V., Schmidt, M., Wong, D.T., Gimzewski, J.K., Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy, ACS nano, Vol. 4, No. 4, pp. 1921-1926, (2010).
 
[12] Ishii, Y., Ishijima, A., Yanagida, T., Single molecule nanomanipulation of biomolecules, TRENDS in Biotechnology, Vol. 19, No. 6, pp. 211-216, (2001).
 
[13] Li, M., Xi, N., Wang, Y., Liu, L., Progress in nanorobotics for advancing biomedicine, IEEE Transactions on Biomedical Engineering, Vol. 38, No. 1, pp. 130-147, (2020).
 
[14] Taheri, M., Bathaee, S.H., Sensitivity analysis of peripheral parameters in three dimentional nano-manipulation by using HK model, Journal of Solid and Fluid Mechanics, Vol. 9, No. 2 pp. 123-139, (2019).
 
[15] Korayem, M. H., Heidary, M., Rastegar, Z., The head and neck cancer (HN-5) cell line properties extraction by AFM, Journal of biological engineering, Vol. 14, No. 1, pp. 1-15, (2020).
 
[16] Fereiduni, F., Taheri, M., Modabberifar, M., Investigation of the effect of different parameters on force in the second phase of two-dimensional nanomanipulation, Iranian Journal of Manufacturing Engineering, Vol. 8, No. 2, pp. 23-31, (2021).‏
 
[17] Taheri, M, Mirzalou, M., Theoretical and experimental simulation of young modulus extraction of breast MCF-10 cells using atomic force microscope, Modares Mechanical Engineering, Vol. 22, No. 1, pp. 37-45, (2021).‏
 [18] Korayem, M. H., Rastegar, Z, Development of 3D manipulation of viscoelastic biological cells by AFM based on contact models and oscillatory drag, Mechanics of Advanced Materials and Structures, Vol. 28, No. 24, pp. 2572-2584, (2021).‏
 
[19] Korayem, M. H., Mozafari, M., Sooha, Y. H., Rastegar, Z., Development and application of rough viscoelastic contact models in the first phase of 3D manipulation for biological micro-/nanoparticles by AFM, Archive of Applied Mechanics, Vol. 91, No. 9, pp. 3739-3753, (2021).‏
 
[20] Khalili, M., Taheri, M., Bathaee, S. H., Shakeri, F., Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics,  Mechanic of Advanced and Smart Materials, Vol. 1, No. 2, pp. 155-174, (2022).
 
[21] Korayem, M. H., Khaksar, H., Optimum path planning of elliptic and cubic nanoparticles using one and dual probe atomic force microscopes, Mechanics of Advanced Materials and Structures, Vol. 29, No. 15, pp. 2126-2141, (2022).
 
[22] Taheri, M., Application of atomic force microscopy in critical force and critical time extraction of 2D manipulation for gastric cancer tissue with different friction models, Nanoscale, Vol. 9, No. 1, pp. 136-145, (2022).‏
 
[23] Taheri, M., Investigation of the effect of different friction models on experimental extraction of 3D nanomanipulation force and critical time of colon cancer tissue, Amirkabir Journal of Mechanical Engineering, Vol. 54, No. 4, pp. 4-4, (2022).‏
 
[24] Johnson, K.L., Kendall, K., Roberts, A., Surface energy and the contact of elastic solids, Proceedings of the royal society of London, A. mathematical and physical sciences, Vol. 324, No. 1558, pp. 301-313, (1971).
 
[25] Sun, Y., Akhremitchev, B., Walker, G.C., Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples, Langmuir, Vol. 20, No. 14, pp. 5837-5845, (2004).
 
[26] Tatara, Y., On compression of rubber elastic sphere over a large range of displacements—part 1: theoretical study, ASME, J. Eng. Mater. Technol, pp. 285-291, (1991).