مروری بر جنبه های مکانیکی و متالورژیکی آسیب در پره های توربین از جنس سوپرآلیاژهای پایه نیکل

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند

2 استاد، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند

3 دانشیار،دانشکده مهندسی مکانیک و مواد، دانشگاه صنعتی بیرجند، بیرجند

چکیده

امروزه به دلیل رشد اقتصادی و افزایش جمعیت، تقاضا برای انرژی در سطح جهانی افزایش یافته است. توربین ­ها به منظور تولید برق، نقش مهمی در تولید توان بر عهده دارند. این صنعت یکی از عوامل مهم در اقتصاد جهانی است و از سال ­های اولیه رشد مداوم را تجربه کرده است. برای دستیابی به بازده ترمودینامیکی بالاتر در توربین ها از درجه حرارت و فشار ورودی بالاتر، آیرودینامیک پیشرفته، سیستم ­های خنک کننده کارآمد در پره­ ها، آلیاژهای پیشرفته با تحمل درجه ­حرارت بالاتر، عملیات حرارتی و پوشش های فلزی و مانع حرارتی سرامیکی استفاده شده است. در شرایط کارکرد توربین، برخی آسیب­ ها ممکن است باعث کاهش عمر آن گردد. در بررسی حاضر، جنبه ­های مکانیکی و متالوژیکی تخریب پره ­های توربین و توسعه مواد برای غلبه بر آن، مورد تحلیل قرار گرفته است. برای تخمین عمر پره­ ها سازوکارهای شکست باید شناسایی شوند. ترکیب متغیرهای مختلف باعث ایجاد تنش­ شده و سازوکارهای آسیب پیچیده مانند خزش و خستگی با تغییر تنش ­های مکانیکی و تنش ­های ناشی از حرارت به ­وجود می­آید. علاوه بر موارد فوق، اهمیت پوشش در پره­ های توربین گازی ذکر شده است. پس از بررسی جنبه­ های مختلف آسیب جهت روشن شدن موضوع، مطالعات موردی شکست پره­ ها حین کار به اختصار تشریح شده است.

کلیدواژه‌ها

موضوعات


[1]           Rani, S., “Common Failures in Gas Turbine Blade: A Critical Review”, International Journal of Engineering Sciences & Research Technology, Vol. 7, No. 3, pp. 799-803, (2018).
 
[2]           Gerengi, M., Polat, F., “Structural and Thermal Analysis of F Class Gas Turbine Compressor Blade” , Düzce Üniversitesi Bilim ve Teknoloji Dergisi. Vol. 10, No. 2, pp. 1045-1066, (2022).
 
[3]           Wahl, J. B., Harris, K., “Superalloys in Industrial Gas Turbines-An Overview”, 9th World Conference on Investment Casting, San Francisco, USA, (1996).
 
[4] Yuri, M., Masada, J., Tsukagoshi, K., Ito, E., Hada, S., “Development of 1600 °C-Class High-Efficiency Gas Turbine for Power Generation Applying J-Type Technology”, Mitsubishi Heavy Industries Technical Review, Vol. 50, No. 3, pp. 1-10, (2013).
 
[5]           Barella, S., Boniardi, M., Cincera, S., Pellin, P., Degive, X., Gijbels, S., “Failure Analysis of a Third Stage Gas Turbine Blade”, Engineering Failure Analysis,  Vol. 18, No. 1, pp. 386-393, (2011).
 
[6]           Chang, S. Y., Oh, K. Y., “Contribution of High Mechanical Fatigue to Gas Turbine Blade Lifetime during Steady-State Operation”, Coatings, Vol. 9, No. 4, pp. 229, (2019).
 
[7]           Singh, K., “Advanced Materials for Land Based Gas Turbines”, Transactions of the Indian Institute of Metals, Vol.  67, No. 5, pp. 601-615, (2014).
 
[8]           Gianfrancesco, A., “Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants”, Woodhead Publishing, (2016).
 
[9]           Heidari, M., Amini, K., “Structural Modification of a Steam Turbine Blade”, Science and Technology International Conference, IOP Publishing, (2017).
 
[10] Rasul, M., “Thermal Power Plants”, BoD–Books on Demand, (2012).
 
[11] Sinkar, Y., Ojha, A., Shah, M., Shah, R., “A Review on Corrosion of Steam Turbin”, International Journal of Advance Engineering and Research Development, Vol. 4, No. 3, pp. 455-461, (2017).
 
[12] Rust, T. M., Steltz, W. G., “Titanium for Steam Turbine Blades”, Journal of Metals, Vol. 34, No. 9, pp. 42-47, (1982).
 
[13] Mukhopadhyay, N. K., Chowdhury, S. G., Das, G., Chattoraj, I., Das, S. K., Bhattacharya, D. K., “An Investigation of the Failure of Low Pressure Steam Turbine Blades, Engineering Failure Analysis”, Vol. 5, No. 3, pp. 181-193, (1998).
 
[14] Jansohn, P., “Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation”, Elsevier, (2013).
 
[15] Sahu, N. K., Kale, J., “A Review of Gas Turbine Rotor Blade Design, International Journal of Advance Research and Innovative Ideas in Education”, Vol. 2, No. 4, pp. 2395-4396, (2018).
 
[16] Oakey, J. E., Pinder, L. W., Vanstone, R., Henderson, M., Osgerby, S., “Review of Status of Advanced Materials for Power Generation, Department of Trade and Industry”, (2003).
 
[17] Mirhosseini, A. M., Nazari, A., Adib Pour, S.,
Haghighi, A., Etemadi, S., Zareh, M., “Failure analysis of first stage nozzle in a heavy-duty gas turbine”, Engineering Failure Analysis, Vol. 109, pp. 104303, (2020).
 
[18] Singh, M. P., Lucas, G. M., “Blade Design and Analysis for Steam Turbines”, McGraw Hill Professional, (2011).
 
[19] Kim, H., “Study of the Fracture of the Last Stage Blade in an Aircraft Gas Turbine”, Engineering Failure Analysis, Vol. 16, No. 7, pp. 2318-2324, (2009).
 
[20] Harlegard, G., “The Design Needs for Advanced Gas Turbine Blading”, Material for Advanced Power Engineering, (1994).
 
[21] Lister, D. H., “Thermal Power Plants”, Vol. 1, EOLSS Publications, (2009).
 
[22] Milička, K., Dobeš, F., “Steels and Materials for Power Plants”, WILEY-VCH Verlag GmbH, Weinheim, (2000).
 
[23] Amaya, H., Mori, T., Kondo, K., Hirata, H., Ueda, M., “Effect of Chromium and Molybedenum on Corrosion Resistance of Super 13Cr Martenistic Stainless Steel in Co2 Environment”, Corrosion 98, NACE International, (1998).
 
[24] Guillou, R., Guttmann, M., Dumoulin, P., “Role of Molybdenum in Phosphorus-Induced Temper Embrittlement of 12% Cr Martensitic Stainless Steel”, Metal Science, Vol. 15, No. 2, pp. 63-72, (1981).
 
[25] Thorbjörnsson, I., “Corrosion Fatigue Testing of Eight Different Steels in an Icelandic Geothermal Environment”, Materials & Design, Vol. 16, No. 2, pp. 97-102, (1995).
 
[26] Wang, X., Xu, J., Sun, C., “Effects of Sulfate-Reducing Bacterial on Corrosion of 403 Stainless Steel in Soils Containing Chloride Ions”, International Journal of Electrochemical Science, Vol. 8, pp. 821-830, (2013).
 
[27] Asai, K., Kurosawa, A., Lee, G., “Titanium 50‑inch and 60‑inch Last‑Stage Blades for Steam Turbines”, Hitachi Review, Vol. 62, No. 1, pp. 23, (2013).
 
[28] Oakey, J. E., “Power Plant Life Management and Performance Improvement”, Woodhead Publishing, (2011).
 
[29] Ganesan, P., “Corrosion Resistance of Inconel Alloy 617 in Simulated Gas Turbine Environments”, ASME International Gas Turbine and Aeroengine Congress and Exposition, Germany, (1992).
 
[30] Brooks, C. R., “Heat Treatment, Structure and Properties of Nonferrou"s Alloys”, (1982).
 
[31] Poursaeidi, E., Aieneravaie, M., Mohammadi, M., “Failure Analysis of a Second Stage Blade in a Gas Turbine Engine”, Engineering Failure Analysis, Vol. 15, No. 8, pp. 1111-1129, (2008).
 
[32] Sims, C. T., Stoloff, N. S., Hagel, W. C., “Superalloys II: High-Temperature Materials for Aerospace and Industrial Power”, Wiley, New York, (1987).
 
[33] Betteridge, W., Heslop, J., “The Nimonic Alloys And Other Nicklbase High-Temperature Alloys”, Edward Arnold (Publishers) Ltd., London, (1974).
 
[34] Kolagar, A. M., Tabrizi, N., Cheraghzadeh, M., Shahriari, M. S., “Failure Analysis of Gas Turbine First Stage Blade Made of Nickel-Based Superalloy”, Case Studies in Engineering Failure Analysis, Vol. 8, pp. 61-68, (2017).
[35] Hakl, J., Vlasák, T., Lapin, J., “Creep Behaviour and Microstructural Stability of Cast Nickel Based Superalloy in 792 5A”, Kovove Materialy, Vol. 45. No. 4, pp. 177-188, (2007).
 
[36] Sims, C. T., Stoloff, N. S., Hagel, W. C., “superalloys II”, Wiley, New York, (1987).
 
[37] Zaretsky, E. B., Kanel, G. I., Razorenov,  S. V., Baumung, K., “Impact Strength Properties of Nickel-Based Refractory Superalloys at Normal and Elevated Temperatures”, International Journal of Impact Engineering, Vol. 31, No. 1, pp. 41-54, (2005).
 
[38] Kim, H. T., Chun, S. S., Yao, X. X., Fang, Y., Choi, J., “Gamma Prime (γ′) Precipitating and Ageing Behaviours in Two Newly Developed Nickel-Base Superalloys”, Journal of Materials Science, Vol. 32, No. 18, pp. 4917-4923, (1997).
 
[39] Zhao, S., Xie, X., Smith, G. D., Patel, S. J., “Gamma Prime Coarsening and Age-Hardening Behaviors in a New Nickel Base Superalloy”, Materials letters, Vol. 58, No. 11, pp. 1784-1787, (2004).
 
[40] Barbosa, C., Nascimento, J. L., Caminha, I. M. V., Abud, I. C., “Microstructural Aspects of the Failure Analysis of Nickel Base Superalloys Components”, Engineering Failure Analysis, Vol. 12, No. 3, pp. 348-361, (2005).
 
[41] Liu, L. R., Jin, T., Zhao, N. R., Sun, X. F., Guan, H. R., Hu, Z. Q., “Formation of Carbides and Their Effects on Stress Rupture of a Ni-Base Single Crystal Superalloy”, Materials Science and Engineering: A, Vol. 361, No. 1-2, pp. 191-197, (2003).
 
[42] Buršık, J., Brož, P., Picha, R., “Microstructural and Phase Equilibria Study in the Ni–Al–Cr–W System at 1173 and 1273 K”, Intermetallics, Vol. 11, No. 5, pp. 483-490, (2003).
 
[43] Peng, J.,         Zhang, H., Li, Y., “Review of Blade Materials for IGT”, Procedia Engineering, Vol. 130, pp. 668-675, (2015).
 
[44] Stringer, J., “High-Temperature Corrosion of Superalloys”, Materials Science and Technology, Vol. 3, No. 7, pp. 482-493, (1987).
 
[45] Donachie, M. J., Donachie, S. J., “Superalloys: a Technical Guide”,  ASM International, (2002).
 
[46] Bouse, G., Schaeffer, J., Henry, M., “Optimizing SC Rene N4 alloy for DS AFT-Stage Bucket Applications in Industrial Gas Turbines”, Proceedings of the International Symposium on Superalloys, pp. 99-108, (2008).
 
[47] Seaver, D., Beltran, A., “Nickel-Base Alloy Gtd-222, a New Gas Turbine Nozzle Alloy”, (1993).
 
[48] Onyszko, A., Kubiak, K., Sieniawski, J., “Turbine Blades of the Single Crystal Nickel Based CMSX-6 Superalloy”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 32, No. 1, pp. 66-69, (2009).
 
[49] Royce, R., “The Jet Engine”, John Wiley & Sons, New York, (2015).
 
[50] Chen, Z., Mengmeng, W., Yanling, P., Shusuo, L., Shengkai, G., “Study on abnormal hot corrosion behavior of nickel-based single-crystal superalloy at 900° C after drilling”, npj Materials Degradation, Vol. 5, No. 1, pp. 1-10, (2021).
 
[51] Bloch, H., “Improving Machinery Reliability in Process Plants, Houston”, Texas: Gulf Publishing, (1982).
 
[52] Song, K. S., Kim, S. G., Jung, D., Hwang, Y. H., “Analysis of the Fracture of a Turbine Blade on a Turbojet Engine”, Engineering Failure Analysis, Vol. 14, No. 5, pp. 877-883, (2007).
 
[53] Walls, D., Delaneuville, R., Cunningham, S., “Damage Tolerance Based Life Prediction in Gas Turbine Engine Blades Under Vibratory High Cycle Fatigue”, ASME International Gas Turbine and Aeroengine Congress & Exposition, Houston, Texas, (1997).
 
[54] Tofighi Naeem, M., Jazayeri, S. A., Rezamahdi, N., “Failure Analysis of Gas Turbine Blades”, Proceedings of the 2008 IAJC-IJME international conference, (2008).
 
[55] Huda, Z., “Metallurgical Failure Analysis For a Blade Failed in a Gas-Turbine Engine of a Power Plant”, Materials & Design, Vol. 30, No. 8, pp. 3121-3125, (2009).
 
[56] Vakili Tahami, F., Adibeig, M. R., “Investigating the Possibility of Replacing IN738LC Gas Turbine Blades with IN718”, Journal of Mechanical Science and Technology, Vol. 29, No. 10, pp. 4167-4178, (2015).
 
[57] Khajavi, M., Shariat, M., “Failure of First Stage Gas Turbine Blades”, Engineering Failure Analysis, Vol. 11, No. 4, pp. 589-597, (2004).
 
[58] Dowson, P., Dowson, D., “Selection of Materials and Material Related Processes for FCC Power Recovery Turbines”, Proceedings of the 38th Turbomachinery Symposium, Texas A&M University, Turbomachinery Laboratories, (2009).
 
[59] Gallardo, J.,  Rodrı́guez, J., Herrera, E., “Failure of Gas Turbine Blades”, Wear, Vol. 252, No. 3-4, pp. 264-268, (2002).
 
[60] Eliaz, N., Shemesh, G., Latanision, R., “Hot Corrosion in Gas Turbine Components”, Engineering Failure Analysis, Vol. 200, No. 1, pp. 31-43, (2002).
 
[61] Swain, B., Mallick, P., Patel, S., Roshan, R., Mohapatra, S. S., Bhuyan, S., Priyadarshini, M., Behera, B., Samal, S., Behera, A., “Failure Analysis and Materials Development of Gas Turbine Blades”, Materials Today: Proceedings, (2020).
 
[62] Rybnikov, A. I., Getsov, L. B., Mozhaiskaya, N. V., Pigrova, G. D., Dashunin, N. V., “Operation Experience with Cast Rotor Blades Made of Russian Alloys in Stationary Gas Turbines”, Thermal Engineering, Vol. 59, No. 3, pp. 242-249, (2012).
 
[63] Τawancy, Η., Al-Hadhrami, L. M., “Degradation of Turbine Blades and Vanes by Overheating in a Power Station”, Engineering Failure Analysis, Vol. 16, No. 1, pp. 273-280, (2009).
 
[64] Vardar, N., Ekerim, A., “Failure Analysis of Gas Turbine Blades in a Thermal Power Plant”, Engineering Failure Analysis, Vol. 14, No. 4, pp. 743-749, (2007).
 
[65] Kargarnejad, S., Djavanroodi, F., “Failure Assessment of Nimonic 80A Gas Turbine Blade”, Engineering Failure Analysis, Vol. 26, pp. 211-219, (2012).
 
[66] Goswami, T., “Creep-Fatigue Interactions of Gas Turbine Materials”, Defence Science Journal, Vol. 38, No. 4, (1988).
 
[67] Saturday, E. G., Isaiah, T. G., “Creep-Fatigue Interaction Life Consumption of Industrial Gas Turbine Blades”, Modern Mechanical Engineering, Vol. 8, No. 4, pp. 221-232, (2018).
 
[68] Zhu, S. P., Huang, H. Z., He, L. P., Liu, Y. A., Wang, Z., “Generalized Energy-Based Fatigue–Creep Damage Parameter for Life Prediction of Turbine Disk Alloys”, Engineering Fracture Mechanics, Vol. 90, pp. 89-100, (2012).
 
[69] Pierce, C. J., Palazotto, A. N., Rosenberger, A. H., “Creep and Fatigue Interaction in the PWA1484 Single Crystal Nickel-Base Alloy”, Materials Science and Engineering: A, Vol. 527, No. 29-30, pp. 7484-7489, (2010).
 
[70] Schönbauer, B. M., Stanzl-Tschegg, S. E., Perlega, A., Salzman, R. N., Rieger, N. F., Zhou, S., Turnbull, A., Gandy, D., “Fatigue Life Estimation of Pitted 12% Cr Steam Turbine Blade Steel in Different Environments and at Different Stress Ratios”, International Journal of Fatigue, Vol. 65, pp. 33-43, (2014).
 
[71] Larrosa, N., Akid, R., Ainsworth, R., “Corrosion-Fatigue: a Review of Damage Tolerance Models”, International Materials Reviews, Vol. 63, No. 5, pp. 283-308, (2018).
 
[72] Dundas, R. E.,              “A Statistical Study of Gas Turbine Losses and Analysis of Causes and Optimum Methods of Prevention, ASME International Gas Turbine and Aeroengine Congress and Exposition”, American Society of Mechanical Engineers Digital Collection, (1994).
 
[73] Ritchie, R. O., Boyce, B. L., Campbell, J. P., Roder, O., Thompson, A. W., Milligan, W. W., “Thresholds for High-Cycle Fatigue in a Turbine Engine Ti–6Al–4V Alloy”, International Journal of Fatigue, Vol. 21, No. 7, pp. 653-662, (1999).
 
[74] Mazur, Z., Luna-Ramirez, A., Juárez-Islas, J. A., Campos-Amezcua, A., “Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy”, Engineering Failure Analysis, Vol. 12, No. 3, pp. 474-486, (2005).
 
[75] Carter, T. J., “Common Failures in Gas Turbine Blades”, Engineering Failure Analysis, Vol. 12, No. 2, pp. 237-247, (2005).
 
[76] Viswanathan, R., “An Investigation of Blade Failures in Combustion Turbines”, Engineering Failure Analysis, Vol. 8, No. 5, pp. 493-511, (2001).
 
[77] Hariprasad, T., Sagar, M. V., Kumari, D. M., “Failure Analysis of Last Stage Low Pressure Steam Turbine Blade”, International Journal for Research in Applied Science & Engineering Technology, Vol. 7, No. XII, pp. 1284-1294, (2015).
 
[78] Hou, J., Wicks, B. J., Antoniou, R. A., “An Investigation of Fatigue Failures of Turbine Blades in a Gas Turbine Engine by Mechanical Analysis”, Engineering Failure Analysis, Vol. 9, No. 2, pp. 201-211, (2002).
 
[79] Chang, J. C., Yun, Y. H., Choi, C., Kim, J. C., “Failure Analysis of Gas Turbine Buckets”, Engineering Failure Analysis, Vol. 10, No. 5, pp. 559-567, (2003).
 
[80] Chung, J., Yoo, H. H., “Dynamic Analysis of a Rotating Cantilever Beam By Using the Finite Element Method”, Journal of Sound and Vibration, Vol. 249, No. 1, pp. 147-164, (2002).
 
[81] Hashemi, S., Farhadi, S., Carra, S., “Free Vibration Analysis of Rotating Thick Plates”, Journal of Sound and Vibration, Vol. 323, No. 1-2, p. 366-384, (2009).
 
[82] Bae, Y. C., Lee, H., Kim, H. S., “Identification of Failure Cause for 300 MW LP Turbine Blade through Vibration Analysis”, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No. 9, pp. 1100-1107, (2005).
 
[83] Choi, Y. S., Lee K. H., “Investigation of Blade Failure in a Gas Turbine”, Journal of Mechanical Science and Technology, Vol. 24, No. 10, pp. 1969-1974, (2010).
 
[84] Ohtani, R., Kitamura, T., Tsutsumi, M., Miki, H., “Initiation and Growth of Small Cracks in Creep Fatigue of an Oxide Dispersion-Strengthened Superalloy at Elevated Temperature”, Transactions A, Japan Society of Mechanical Engineers, Vol. 59, No. 560, pp. 933-938, (1993).
 
[85] Sabour, M., Bhat, R., “Lifetime Prediction in Creep-Fatigue Environment”, Materials Science-Poland, Vol. 26, No. 3, pp. 563-584, (2008).
 
[86] Reyhani, M. R., Alizadeh, M., Fathi, A., Khaledi, H., “Turbine Blade Temperature Calculation and Life Estimation-A Sensitivity Analysis”, Propulsion and Power Research, Vol. 2, No. 2, pp. 148-161, (2013).
 
[87] Schijve, J., “Fatigue of Structures and Materials”, Springer Science & Business Media, (2001).
 
[88] Stephens, R. I., Fatemi, A., Stephens, R. R., Fuchs, H. O., “Metal Fatigue in Engineering”, John Wiley and Sons, New York, (2001).
 
[89] Barjesteh, M. M., “Rejuvenation of Nickel-Based Superalloy Experiencing Creep via Use of Hot Isostatic Pressing and Heat Treatment”, International Journal of Metalcasting, pp. 1-16. (2022).
 
[90]   Collins, J. A., “Failure of Materials in Mechanical Design: Analysis”, Prediction, Prevention, John Wiley & Sons, New York, (1993).
 
[91] Rayapati, S., “Gas turbine blade failure scenario due to thermal loads in case of Nickel based super alloys”, Materials Today: Proceedings, Vol. 46, pp. 8119-8126, (2021).
 
[92] Madhu, P., “Stress Analysis and Life Estimation of Gas Turbine Blisk for Different Materials of a Jet Engine”, International Journal of Science and Research, Vol. 5, No. 6, pp. 1103-1107, (2016).
 
[93] Ravindra, K., Raju, P. D., “Modelling and Analysis of Gas Turbine Rotor Blade”, International Research Journal of Engineering and Technology, Vol. 4, No. 12, (2017).
 
[94] Khawaja, H., Moatamedi, M., “Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis”, The International Journal of Multiphysics, Vol. 8, No. 1, (2016).
 
[95] Kumar, R. R., Pandey, K., “Static Structural Analysis of Gas Turbine Blade”, Journal of Basic and Applied Engineering Research, Vol. 3, No. 3, pp. 276-281, (2016).
 
[96] Gurajarapu, N., Rao, V. N. B., Kumar, I. N., “Selection of a Suitable Material And Failure Investigation on a Turbine Blade of Marine Gas Turbine Engine Using Reverse Engineering and FEA Techniques”, International Journal of u-and e-Service, Science and Technology, Vol. 7, No. 6, pp. 297-308, (2014).
 
[97] Sarkar, D., “Thermal Power Plant: Pre-Operational Activities”, Elsevier, (2016).
 
[98] Wang, Z., Ma, J., Wang, S., Wang, M., “Investigation on the Effects of Blade Corrosion on Compressor Performance”, Journal of the Chinese Institute of Engineers, Vol. 39, No. 7, pp. 816-824, (2016).
 
[99] Morini, M., Pinelli, M., Spina, P. R., Venturini, M., “Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance”, Journal of Engineering for Gas Turbines and Power, Vol. 133, No. 7, (2011).
 
[100] Neidel, A., Riesenbeck, S., “Pitting Corrosion Induced Fatigue Fracture on a Gas Turbine Compressor Blade”, Practical Metallography, Vol. 49, No. 1, pp. 35-48, (2012).
 
[101]      Niketan, S., Pavlık, V., Boca, M., “High Temperature Corrosion Behavior of Superalloys in Molten Salts-A Review”, Critical Reviews in Solid State and Materials Sciences, Vol. 42, No. 1, pp. 83-97, (2017).
 
[102]      Kalsi, S. S., “Hot Corrosion and its Mechanism: A Review”, International Journal on Emerging Technologies, Vol. 7, No. 1, pp. 133-136, (2016).
 
[103] Hancock, P., “Vanadic and Chloride Attack of Superalloys”, Materials Science and Technology, Vol. 3, No. 7, pp. 536-544, (1987).
 
[104]      Rapp, R. A., “Chemistry and Electrochemistry of the Hot Corrosion of Metalls”, Materials Science and Engineering, Vol. 87 pp. 319-327, (1987).
 
[105] Lee, S. Y., Young, W., Hussey, C., “Environmental Effects on the High-Temperature Corrosion of Superalloys in Present and Future Gas Turbines”, (1972).
 
[106] Foggo, J. G., Nordman, D. B., Jones, R., “Inhibition of Low Temperature Hot Corrosion by Zn, Na Mixed Sulfates: Relation Between Sulfation and Corrosion Reactions”, Journal of The Electrochemical Society, Vol. 131, No. 3, pp. 515, (1984).
 
[107] Hollingshead, R. S., “Effect of Zinc on the Sulphidation Reaction in Marine Gas Turbines”,  Defence Research Establishment Atlantic Dartmouth (Nova Scotia), (1980).
 
[108] Alqallaf, J., Ali, N., Teixeira, J. A., Addali, A., “Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades-A Review”, Processes, Vol. 8, No. 8, pp. 984-1026, (2020).
 
[109] Boyce, M. P., “Gas Turbine Engineering Handbook”, Elsevier, (2011).
 
[110] Oh, M. J. M., Lai, G. Y., Rothman, M. E., “High  Temperature  Corrosion  of Superalloys in an Environment  Containing Both  Oxygen  and Chlorine”, Metallurgical  Transactions  A, (1984).
 
[111] Otsuka, N., Rapp, R. A., “Hot Corrosion of Preoxidized Ni by a Thin Fused Na2SO4 Film at 900 °C”, Journal of the Electrochemical Society, Vol. 137, No. 1, pp. 46, (1990).
 
[112] Benini, E., “Advances in Gas Turbine Technology”, BoD–Books on Demand, (2011).
 
[113]      Hashmi, S., “Comprehensive Materials Processing”, Newnes, (2014).
 
[114] Nicholls, J. R., Simms, N. J., Chan, W. Y., Evans, H. E., Nicholls, J., “Smart Overlay Coatings-Concept and Practice”, Surface and Coatings Technology, Vol. 149, No. 2-3, pp. 236-244, (2002).
 
[115] Strawbridge, A., Evans, H. E., Ponton, C., “Spallation of Oxide Scales from Nicraly Overlay Coatings”, Materials Science Forum, Switzerland, Trans Tech Publications, (1997).
 
[116] Schilke, P., “Advanced Gas Turbine Materials and Coatings, Report GER-3569G, General Electric Company”, Schenectady, NY, (2004).
 
[117] Tchizhik, A. A., Rybnikov, A. I., Malashenko, I. S., Leontiev, S. A., Osyka, A. S., ‘The Effect of Eb PVD Coatings on Structure and Properties of Nickel-Base Superalloy for Gas Turbine Blades”, Surface and Coatings Technology, Vol. 78, No. 1-3, pp. 113-123, (1996).
 
[118] Swain, B., Mallick, S., Patel, R., Roshan, S., Mohapatra, S., Bhuyan, M., Priyadarshini, B., Behera, S., Samal, A., Behera, “Failure analysis and materials development of gas turbine blades”, Materials Today: Proceedings, Vol. 33, pp. 5143-5146, (2020).
 
[119] Błachnio, J., Spychała, J., Zasada, D., “Analysis of structural changes in a gas turbine blade as a result of high temperature and stress”, Engineering Failure Analysis, Vol. 127, pp. 105554, (2021).
 
[120] Clarke, D. R., Oechsner, M., Padture, N. P., “Thermal-Barrier Coatings for more Efficient Gas-Turbine Engines”, MRS Bulletin, Vol. 37, No. 1, pp. 891-898, (2012).
[121]      Naik, S., “Basic Aspects of Gas Turbine Heat Transfer, Heat Exchangers–Design”, Experiment and Simulation, pp. 111-142, (2017).
 
[122] Zhu, J., Ma, K., “Microstructural and Mechanical Properties of Thermal Barrier Coating at 1400 °C Treatment”, Theoretical and Applied Mechanics Letters, Vol. 4, No. 2, pp. 021008, (2014).
 
[123]      Ujade, G., Bhambere, M., “Review of Structural and Thermal Analysis of Gas Turbine Blade”, International Journal of Mechanical Engineering and Robotics Research, Vol. 3, No. 2, pp. 347, (2014).
 
[124] Li, B., Fan, X., Li, D., Jiang, P., “Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis”, Mathematical Problems in Engineering, Vol. 2017, pp. 2147830, (2017).
 
[125]      Saini, A., Shandil, N., “Thermal Analysis of Partially Stabilized Zirconia and Lanthanum Magnesium Hexaaluminate as Thermal Barrier Coatings over Hastelloy X Gas Turbine Blade”, Journal of New Technology and Materials, Vol. 277, No. 2653, pp. 1-12, (2015).
 
[126]      Saini, A., Das, D., Pathak, M., “Thermal Barrier Coatings-Applications, Stability and Longevity Aspects”, Procedia Engineering, Vol. 38, pp. 3173-3179, (2012).
 
[127]      Ziaei-Asl,  A., Ramezanlou, M. T., “Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses”, International Journal of Mechanical Sciences, Vol. 150, pp. 656-664, (2019).
 
[128] Golezani, A.,              Bageri, M., Samadi, R., “Microstructural Change and Impact Toughness Property of Inconel 738LC after 12 years of Service”, Engineering Failure Analysis, Vol. 59, pp. 624-629, (2016).
 
[129] Rybnikov, A., Getsov, L., Leontiev, S., “Failure Analysis of Gas Turbine Blades”, Microscopy and Microanalysis, Vol. 11, No. S02, pp. 222-223, (2005).
 
[130] Umamaheswararao, L., Mallikarjunarao, K., “Design and Analysis of a Gas Turbine Blade by Using FEM”, International Journal of Latest Trends in Engineering and Technology, Vol. 4, No. 4, pp. 19-24, (2014).
 
[131] Krishnakanth, P. V., Raju, G. N., Prasad, R. D. V., Saisrinu, R., “Structural & Thermal Analysis of Gas Turbine Blade by Using FEM”, International Journal of Scientific Research Engineering and Technology, Vol. 2, No. 2, pp. 60-65, (2013).
 
[132] Mohamad, B. A., Abdelhussien, A., “Failure Analysis of Gas Turbine Blade Using Finite Element Analysis”, International Journal of Mechanical Engineering and Technology, Vol. 7, No. 3, (2016).
 
[133] Murali,  K., Rambabu, B., “Design and Fatigue Analysis of Turbine Rotor Blade by Using F.E.M”, International Journal & Magazine of Engineering, Technology, Management and Research, Vol. 2, No. 4, pp. 638-643, (2015).
 
[134] Sindhu, N. L., Chikkanna, N., “Design and Analysis of Gas Turbine Blade’, International Journal for Research in Applied Science & Engineering Technology, Vol. 5, No. VI, pp. 1097-1104, (2017).
 
[135] Rao, M. A., Kumar, M. P., Narayanan, T. S., Rao, S. S., Narasaiah, N., “Failure Analysis of a Low-Pressure Turbine Blade in a Coal-Based Thermal Power Plant”, Journal of Failure Analysis and Prevention, Vol. 15, No. 5, pp. 750-757, (2015).
 
[136]      Kubiak, J. Sz., Juarez, R. J., Nebradt, G., Sierra, E., “An Investigation on the Failure of an L-0 Steam Turbine Blade”, ASM International, (2004).
 
[137] Kubiak, J., Urquiza, G., Rodriguez, J. A., González, G., Rosales, I., Castillo, G., Nebradt, J., “Failure Analysis of the 150 MW Gas Turbine Blades”, Engineering Failure Analysis, Vol. 16, pp. 1794–1804, (2009).
 
[138]      Jahangiri, M., Fallah, A., Ghiasipour, A., “Cement Kiln Dust Induced Corrosion Fatigue Damage of Gas Turbine Compressor Blades–A Failure Analysis”, Materials & Design, Vol. 62, pp. 288-295, (2014).
 
[139] Bhagi, L. k., Gupta, P., Rastogi, V., “Fractographic Investigations of the Failure of L-1 Low Pressure Steam Turbine Blade”, Case Studies in Engineering Failure Analysis, pp. 72-78, (2013).
 
[140] Ziegler, D., Puccinelli, M., Bergallo, B., Picasso, A., “Investigation of Turbine Blade Failure in a Thermal Power Plant”, Case Studies in Engineering Failure Analysis, Vol. 1, No. 3, pp. 192-199, (2013).
 
[141] Rani, S., Agrawal, A. K., Rastogi, V., “Failure Analysis of a First Stage IN738 Gas Turbine Blade Tip Cracking in a Thermal Power Plant”, Case Studies in Engineering Failure Analysis, Vol. 8, pp. 1-10, (2017).
 
[142] Rani, S., Agrawal, A. K., Rastogi, V., “Failure Investigations of a First Stage Ni Based Super Alloy Gas Turbine Blade”, Materials Today: Proceedings, Vol. 5, No. 1, pp. 477-486, (2018).
 
[143] Rajabinezhad, M., Bahrami, A., Mousavinia, M., Seyedi, S. J., Taheri, P., “Corrosion-Fatigue Failure of Gas-Turbine Blades in an Oil and Gas Production Plant”, Materials, Vol. 13, No. 4, pp. 900, (2020).
 
[144] Wang, R., Zhang, B., Hu, D., Jiang, K., Liu, H., Mao, J., Jing, F., Hao, X., “Thermomechanical Fatigue Experiment and Failure Analysis on a Nickel-Based Superalloy Turbine Blade”, Engineering Failure Analysis, Vol. 102, pp. 35-45, (2019).
 
[145] Kazempour-Liasi, H., Shafiei, A., Lalegani, Z., “Failure analysis of first and second stage gas turbine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
blades”, Journal of Failure Analysis and Prevention, Vol. 19, No. 6, pp. 1673-1682, (2019).
 
[146] Bannazadeh, R.,       Riahi, M., Aieneravaie, M., “Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Super Alloy”, Amirkabir Journal of Mechanical Engineering, Vol. 50, No. 1, pp. 35-38, (2018).