تحلیل حساسیت در لوله‌های کامپوزیتی- فلزی با اتصالات چسبی تحت بارگذاری کششی

نوع مقاله : علمی ترویجی

نویسندگان

1 کارشناس ارشد دانشکده مهندسی هوافضا، دانشگاه سمنان

2 دانشیار دانشکده مهندسی هوافضا، دانشگاه سمنان

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه سمنان

چکیده

در این مقاله اثر نرخ جابجایی در بارگذاری کششی بر استحکام (نیروی بیشینه و تغییر طول) اتصال چسبی در لوله‌های ساخته شده از فلز و مواد کامپوزیتی شیشه- اپوکسی و کربن- اپوکسی بررسی شده است. بدین منظور نمونه ­های مختلف از لوله ­های متصل به ­هم با ضخامت و طول ناحیه چسب­ خور مختلف (طول 10، 20 و 30 میلیمتر و ضخامت 25/0، 10/0 و 40/0 میلیمتر)، ساخته شد. سپس نمونه ­ها تحت بارگذاری کششی با نرخ­ های مختلف جابجایی (5/0، 5 و 50 میلیمتر بر دقیقه) قرار گرفته و در ادامه، میزان تحمل بار و نوع خرابی آن‌ها مشخص گردید. بر اساس نتایج، با افزایش مقدار نرخ جابجایی در بارگذاری کششی در هر یک از نمونه‌های کربن- اپوکسی، نیروی بیشینه افزایش یافت. با افزایش نرخ جابجایی در بارگذاری کششی، ناحیه شکست از قسمت اتصال چسبی به قسمت مواد کامپوزیتی تغییر یافت. در مورد نمونه ­های شیشه- اپوکسی، می­توان ابراز داشت که افزایش نرخ جابجایی در بارگذاری کششی، به تدریج باعث افزایش نیروی بیشینه شد. در نهایت، بر اساس تحلیل حساسیت مشخص شد که آنالیز رگرسیون برای هر دو تابع هدف نیروی بیشینه و تغییر طول، بطور مناسبی، معتبر نبوده است.

کلیدواژه‌ها

موضوعات


[1] Dragoni, E., Goglio, L., Adhesive stresses in axially-loaded tubular bonded joints - Part I: Critical review and finite element assessment of published models, International Journal of Adhesion and Adhesives, Vol. 47, pp. 35-45, (2013).
[2] Han, J., Yuan, H., Full debonding process of adhesively bonded composite and metallic pipe joints under torsion, Mathematical Problems in Engineering, Vol. 2016, Article ID: 1237493, (2016).
[3] Clark, G., Wang, C. H., Review on the fatigue of composite hybrid joints used in aircraft structures, Advanced Materials Research Advanced Materials Research, Vols. 891-892,. pp.1591-1596, (2014).
[4] Ascione, F., Mancusi, G., Axial/bending coupled analysis for FRP adhesive lap joints, Mechanics of Advanced Materials and Structures, Vol. 17, No. 2, pp. 85-98, (2010).
[5] Banea, M. D., da Silva, L. F. M., Adhesively bonded joints in composite materials: An overview. Proceedings of the Institution of Mechanical Engineers, Journal of Materials: Design and Applications, Vol.  223, No. 1, pp. 1-18, (2009).
[6] Gan, Y. X., Effect of interface structure on mechanical properties of advanced composite materials, International Journal of Molecular Sciences, Vol. 10, No. 12, pp. 5115-5134, (2009).
[7] Meguid, S. A., Sun, Y., On the tensile and shear strength of nano-reinforced composite interfaces, Materials and Design, Vol. 25, No. 4, pp. 289-296, (2004).
[8] F. Mortensen, O. T. Thomsen, Analysis of adhesive bonded joints: A unified approach, Composites Science and Technology, Vol. 62, No. 7, pp. 1011-1031, (2002).
[9] Mortensen, F., Thomsen, O. T., Coupling effects in adhesive bonded joints, Composite Structures, Vol. 56, No. 2, pp. 165-174, (2002).
[10] Vashchenko, A., Spiridonova, I., Sukhovaya, E. V., Deformation and fracture of structural materials under high-rate strain, Metalurgija, Vol. 39, No. 2, pp. 89-92, (2000).
[11] Staab, G. H., Gilat, A., High strain rate response of angle-ply glass/epoxy laminates, Journal of Composite Materials, Vol. 29, pp. 1308-1328, (1995).
[12] Gilat, G. H. A., High strain rate characterization of angle-ply glass/epoxy laminates, 9th International Conference on Composite Materials, Madrid, Spain, pp. 278-285, (1993).
[13] Roberts, S., Harding, J., Effect of strain rate on the tensile failure of glass-fiber braided tubes, Journal of Physique IV, Vol. 1, pp. 353-359, (1991).
[14] Shahryarifard, M. M., Golzar, M., Safarabadi, M., Novel parameters in load capacity and failure of coaxial steel tubes jointed by wrapped GFRP sleeve, International Journal of Adhesion and Adhesives, Vol. 82, pp.79-89, (2018).
[15] Shahryarifard, M. M., Golzar, M., Safarabadi, M., Optimization of laminated GFRP pipe/steel tube joints under axial tensile loads, 1st International Conference on Composite Pipes, Vessels and Tanks, 28-29 January, Tehran, Iran, (2015).(in Persianفارسی )
[16] Shahryarifard, M. M., Golzar, M., Safarabadi, M., Investigation of the geometrical parameters effect on laminated GFRP/steel circular tube joints, 1st International Conference on Composite Pipes, Vessels and Tanks, 28-29 January, Tehran, Iran, (2015). (in Persianفارسی )
[17] Pakzadian, P., Safarabadifarahani, M., Ganjiani, S. M., Reinforcement of welded metal tubes joints using polymeric laminated composites, 5th International Conference on Composites: Characterization, Fabrication and Application, 20-21 December, Tehran, Iran, (2016).
[18] Aliyari, M., Safarabadi, M., M. Shariat Panahi,Finite element analysis of piping composite joints under bending load, 5th International Conference on Composites: Characterization, Fabrication and Application, 20-21 December, Tehran, Iran, (2016).
[19] M. Aliyari, M. Safarabadi, Shariat Panahi, M., Optimization of fiber-reinforced plastic (FRP) /metal joints using the complex method, 5th International Conference on Composites: Characterization, Fabrication and Application, 20-21 December, Tehran, Iran, (2016).
[20] Groves, S. E., Sanchez, R. J., Lyon, R. E., Brown, A. E., High strain rate effects for composite materials, Composite Materials: Testing and Design, ASTM STP 1206, Editor: E. T. Camponeschi. American Society for Testing and Materials, Philadelphia, Vol. 11, pp. 162-176, (1993).
[21] Hsiao, I. M., H. M., Cordes, R. D., High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, American Society of Mechanical Engineers, Vol. 48, pp. 167-177, (1995).
[22] Daniel, I. M., Liber, T., Testing of fiber composites at high strain rates, 2nd International Conference on Composite Materials, Toronto, Canada, pp. 1003-1018, (1978).
[23] Daniel, I. M., Liber, T., Strain rate effects on the mechanical properties of fiber composites, Report NASA CR-135087, Part 3, (1976).
[24] Zhao, W., Zhang, W., Duan, Z., Yang, F., Xu, J., Torsion properties of carbon fiber reinforced polymer composite-metal transmission shaft based on delamination damage analysis, Acta Materiae Compositae Sinica, Vol. 38(5), pp. 1476-1486, (2021).
[25] Sun, H., Kosukegawa, H., Takagi, T., Uchimoto, T., Hashimoto, M., Takeshita, N., Electromagnetic pulse induced acoustic testing and the pulsed guided wave propagation in composite/metal adhesive bonding specimens, Composites Science and Technology, Vol. 201, Article ID: 108499, (2021).
[26] Rouzegar, J., Niknejad, A., S. M., Elahi, Elahi, S. A., Experimental investigation into the energy absorption of composite-metal tubes subjected to lateral load, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 44, pp. 585-598, (2020).
[27] Abdel Wahab, M. M., Fatigue in adhesively bonded joints: A review, International Scholarly Research Notices, Vol. 2012, Article No. 746308, (2012).
[28] Lees, J. M., Behavior of GFRP adhesive pipe joints subjected to pressure and axial loadings, Composite Part A, Vol. 37, No. 8, pp. 1171-1179, (2006).
[29] Azadi, M., Saeedi, M., Shirazabad, M.M., Lopez-Crespo, P., Sensitivity analysis of fracture behavior in carbon-epoxy composite at different displacement rates under mode I tensile loading by regression analysis, Amirkabir Jounral of Mechanical Engineering, Vol. 53, No. 4, pp. 15-15, (2021).
[30] Maleki, S., Andakhshideh, A., Seyfi, A., Experimental and numerical investigation of second mode of failure in unlike end notch flexure samples, Amirkabir Jounral of Mechanical Engineering, Vol. 52, No. 8, pp. 2093-2106, (2020).
[31] Osouli-Bostanabad, K., Tutunchi, A., M., Eskandarzade, Kianvash, A., Numerical and experimental investigation on boding strength optimization of glass fibers-reinforced epoxy composites on a structural steel substrate, Modares Mechanical Engineering, Vol. 19, No. 2, pp. 387-396, (2019).
[32] Galinska, A., Mechanical joining of fibre reinforced polymer composites to metals - A Review. Part I: Bolted joining, Polymers, Vol. 12, No. 10, Article ID: 2252, (2020).
[33] Cherpakov, A. V., Chebakov, M. I., Zecheru, G., Dumitrescu, A., Modeling of corrosion in filler defect in the repair of pipes overlay composite bandage, Advanced Materials, Editors: I. Parinov, S. H. Chang, M. Jani, Springer, Vol. 193, (2017).
[34] da Rocha, M. L., M. C., de O. Leite, da C. Ferreira, E. P., Melo, J. D. D., Barbosa, A. P. C., Accelerated aging effects in composites used as repair for pipes in oil industry, Polymer Composites, DOI:10.1002/pc.26271, (2021).
[35] Echtermeyer, A. T., Sund, O. E., Ronold, K. O., Moslemian, R., Hassel, P. A., A new recommended practice for thermoplastic composite pipes, 21th International Conference on Composite Materials, 20-25 August, Xi’an, China, (2017(.