روش های مدلسازی عددی نشست ذرات درمسائل صنعتی

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه خلیج فارس، بوشهر

چکیده

مدلسازی عددی به منظور تسلط بر جزئیات پیچیده نشست ذرات در مسائل صنعتی، اهمیت بسیاری دارد. شرایط و معادلات حاکم بر مدلسازی عددی تشکیل لایه نشست با توجه به عوامل مؤثر و نیروهای تأثیرگذار، متفاوت می­باشد. در تحقیق حاضر، پیشنهادی در خصوص استفاده از شرایط و معادلات حاکم بر نشست ذرات، ارائه­شده است. روش­های مدلسازی عددی برحسب دو دیدگاه لاگرانژی و اویلری تقسیم می­شوند. برای مدلسازی نشست ذرات در نسبت حجمی بیشتر از3-10 از روش­های اویلری و در نسبت حجمی کمتر از3-10 از روشهای لاگرانژی، استفاده می­شود. در میان روش­های اویلری، روش دریفت فلاکس متداول­تر است. در روش­های لاگرانژی، اگر ذرات کوچک باشند (نانومتری) و نسبت حجمی کمتر از 6-10 باشد به دلیل بیشتر بودن نیروی واندروالسی بین ذرات و محل نشست، از شرط دیوار چسبناک استفاده می­شود. بعلاوه با افزایش اندازه ذرات، باید احتمال بازگشت دوباره آنها به جریان بررسی شود و در صورت بالا بودن سرعت جریان باید احتمال جدایش ذرات از لایه رسوب در نظر گرفته شود. دما نیز بر نشست ذرات تأثیرگذار است. افزایش دما باعث تغییر فاز ذرات و در نتیجه آن نشست آن­ها در هنگام برخورد به سطح می­گردد.

کلیدواژه‌ها


  1. Garett-Price, B., S. Smith, R. Watts, J. Knudsen, W. Marner, and J. Suitor, Fouling of Heat Exchangers, Noyes Publications, Park Ridge, NJ, USA.4, (1985).

 

  1. Singh, S. and D. Tafti, Particle deposition model for particulate flows at high temperatures in gas turbine components. International Journal of Heat and Fluid Flow, 52: pp. 72-83, (2015).

 

  1. Han, T., A. Booth, S. Song, D. Styles, and J. Hoard. Review and A Conceptual Model of Exhaust Gas Recirculation (EGR) Cooler Fouling Deposition and Removal Mechanism. in Proceedings of the Int. Conf. on Heat Exchanger Fouling and Cleaning. (2015).

 

  1. Weiwei, X., Z. Konghao, W. Jianjun, L. Yajun, and L. Qiang, Modeling and numerical analysis of the effect of blade roughness on particle deposition in a flue gas turbine. Powder Technology, 347: pp. 59-65, (2019).

 

  1. Abd-Elhady, M.S., M.R. Malayeri, and H. Müller-Steinhagen, Fouling problems in exhaust gas recirculation coolers in the automotive industry. Heat Transfer Engineering, 32(3-4): pp. 248-257, (2011).

 

  1. Gimenez, J.M., D. Ramajo, and N.M. Nigro, Particle transport in laminar/turbulent flows. Mecánica Computacional, 31(2): pp. 151-164, (2012).

 

  1. Lu, H. and L. Lu, Numerical investigation on particle deposition enhancement in duct air flow by ribbed wall. Building and Environment, 85: pp. 61-72, (2015).

 

  1. Kallio, G. and M. Reeks, A numerical simulation of particle deposition in turbulent boundary layers.

 

  1. International Journal of Multiphase Flow, 15(3): pp. 433-446, )1989(.

 

  1. Kasper, R., J. Turnow, and N. Kornev, Numerical modeling and simulation of particulate fouling of structured heat transfer surfaces using a multiphase Euler-Lagrange approach. International Journal of Heat and Mass Transfer, 115: pp. 932-945, (2017).

 

  1. Brandon, D.J. and S. Aggarwal, A numerical investigation of particle deposition on a square cylinder placed in a channel flow. Aerosol Science & Technology, 34(4): pp. 340-352, (2001).

 

  1. Tsai, C.-J. and D.Y. Pui, Numerical study of particle deposition in bends of a circular cross-sectionlaminar flow regime. Aerosol Science and Technology, 12(4): pp. 813-831, (1990).

 

  1. Seyfi, S., B. Mirzayi, and H. Seyyedbagheri, CFD modeling of black powder particles deposition in 3D 90-degree bend of natural gas pipelines. Journal of Natural Gas Science and Engineering, 78: pp.103330, (2020).

 

  1. Jiang, H., L. Lu, and K. Sun, Experimental study and numerical investigation of particle penetration and deposition in 90 bent ventilation ducts. Building and Environment, 46(11): pp. 2195-2202, (2011).

 

  1. Elimelech, M., Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution, and simulations. Separations Technology, 4(4): pp. 186-212, (1994).

 

  1. Song, L. and M. Elimelech, Calculation of particle deposition rate under unfavourable particle–surface interactions. Journal of the Chemical Society, Faraday Transactions, 89(18): pp. 3443-3452, (1993).

 

  1. AL-Shami, H.M., A.A. Monem, and E.A. Khazal, Numerical simulation of indoor airflow and particle deposition in the clean room (surgical operation room). International Journal of Energy and Environment, 9(3): pp. 269-282, (2018).

 

  1. Zhao, B., X. Li, and Z. Zhang, Numerical study of particle deposition in two differently ventilated rooms. Indoor and built environment, 13(6): pp. 443-451, (2004).

 

  1. Zhao, B. and J. Chen, Numerical analysis of particle deposition in ventilation duct. Building and Environment, 41(6): pp. 710-718, (2006).
  2. Inthavong, K., Z. Tian, H. Li, J. Tu, W. Yang, C. Xue, and C.G. Li, A numerical study of spray particle deposition in a human nasal cavity. Aerosol Science and Technology, 40(11): pp. 1034-1045, (2006).

 

  1. Mofakham, A.A. and G. Ahmadi, Particles dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models. Physics of fluids, 31(8): pp. 083301, (2019).

 

  1. Henry, C., J.-P. Minier, and G. Lefèvre, Towards a description of particulate fouling: From single particle deposition to clogging. Advances in colloid and interface science, 185: pp. 34-76, (2012).

 

  1. Dahneke, B., Further measurements of the bouncing of small latex spheres. Journal of Colloid and Interface Science, 51(1): pp. 58-65, (1975).

 

  1. El-Batsh, H. and H. Haselbacher. ON PARTICLE DEPOSITION ON TURBINE BLADES. in 4th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics: Conference Proceedings:[Firenze, Italy, March 20-23, 2001]. SGE, (2001).

 

  1. El-Batsh, H. and H. Haselbacher, Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades. Vol. 3610, (2002).

 

  1. Wang, J., K. Tian, H. Zhu, M. Zeng, and B. Sundén, Numerical investigation of particle deposition in film-cooled blade leading edge. Numerical Heat Transfer, Part A: Applications, 77(6): pp. 579-598, (2020).

 

  1. Xu, Z., Z. Han, A. Sun, and X. Yu, Numerical study of particulate fouling characteristics in a rectangular heat exchange channel. Applied Thermal Engineering, 154: pp. 657-667, (2019).

 

  1. Zhan, F., D. Zhuang, G. Ding, and J. Tang, Numerical model of particle deposition on fin surface of heat exchanger. International Journal of Refrigeration, 72: pp. 27-40, (2016).

 

  1. Tang, S.-Z., Y.-L. He, F.-L. Wang, and Y.-B. Tao, Parametric study on fouling mechanism and heat transfer characteristics of tube bundle heat exchangers for reducing fouling considering the deposition and removal mechanisms. Fuel, 211: pp. 301-311, (2018).

 

  1. Tong, Z.-X., M.-J. Li, Y.-L. He, and H.-Z. Tan, Simulation of real time particle deposition and removal processes on tubes by coupled numerical method. Applied energy, 185: pp. 2181-2193, (2017).

 

  1. Paz, C., E. Suárez, A. Eirís, and J. Porteiro, Development of a predictive CFD fouling model for diesel engine exhaust gas systems. Heat TransferEngineering, 34(8-9): pp. 674-682, (2013).