مروری بر انواع فراماده، روش ساخت افزایشی و کاربرد آن در صنعت خودرو

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان

چکیده

پیشوند "meta" در کلمه "metamaterial" در زبان یونانی به معنای "فراتر" از ماده است. بنابر این متا متریال یا فرا مواد‌ خواصی فراتر از مواد طبیعی دارند. خواص این مواد از ماده‌ای که از آن تشکیل شده است استخراج نمی‌شود اما خواص آن­ها وابسته به ساختار آن­ها است. این ساختار خاص در فرا مواد از تکرار و کنارهم قرارگرفتن جزها یا آرایه­های مشابه تولید می­شود که به آن سلول گفته می­شود. لذا فرا مواد دارای ساختار بسیار پیچیده است. در نتیجه توانایی بالای تولیدات افزایشی در تولید ساختارهای پیچیده باعث شده توجه­ها به سمت این تکنولوژی جلب شود. انواع مختلف فرا مواد وجود دارد که به طور کلی به چهار گروه تقسیم می شوند که هر کدام کاربرد وسیعی در زمینه­ها مختلف از جمله صنایع دفاعی، خودرویی، هوافضا و پزشکی دارند. هدف از تدوین این مقاله آشنایی با انواع فرا مواد، سلول­های متفاوت، کاربردها و روش ساخت این مواد به صورت جامع و دسته بندی شده است. این مقاله همچنین به طور خاص کاربرد انواع فرا مواد را در صنعت خودرو بررسی کرده است.

کلیدواژه‌ها

موضوعات


 
[1] M. Askari, D. Hutchins, P. Thomas, L. Astolfi, R. Watson, M. Abdi, M. Ricci, S. Laureti, L. Nie, S. Freear, R. Wildman, C. Tuck, M. Clarke, E. Woods, A. Clare, Additive Manufacturing of Metamaterials: A review, Additive Manufacturing, Vol. 36, Article No. 101562, (2020).
 
[2] T. Li, X. Hu, Y. Chen, L. Wang, Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson’s ratio, Scientific Reports, Vol. 7, Article No. 8949, (2017).
 
[3] F. Junxiang, Z. Lei, W. Shuaishuai, Z. Zhi, C. Seung-Kyum, S. Bo, S. Yusheng, A review of additive manufacturing of metamaterials and developing trends, Materials Today, (2021), doi: 10.1016/J.MATTOD.2021.04.019.
 
[4] G. Singh, A. Rajni, A. Marwaha, A Review of Metamaterials and its Applications, International Journal of Engineering Trends and Technology, Vol. 19, No. 6, pp. 305–310, (2015).
 
[5] R. Liu, C. Ji, Z. Zhao, T. Zhou, Metamaterials: Reshape and Rethink, Engineering, Vol. 1, No. 2, pp. 179–184, (2015).
 
[6] J. Jung, H. Kim, S. Goo, K. Chang, S. Wang, Realization of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation, Mechanical Systems and Signal Processing, Vol. 122, pp. 206–231, (2019).
 
[7] X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, Vol. 94, pp. 114–173, (2018).
 
[8] K. Liu, L. Hand, W. Hua, L. Ji, S. Zhua, Z. Wan, X. Yang, Y. Wei, Z. Dai, Z. Zhao, Z. Li, P. Wangc, R. Tao, 4D printed zero Poisson’s ratio metamaterial with switching function of mechanical and vibration isolation performance, Materials and Design, Vol. 196, Article No. 109153, (2020).
 
[9] Q. Qi, P. Zhang, W. Wu, K. Xin, H. Liao, Y. Li, D. Xiao, R. Xia, Innovative 3D chiral metamaterials under large deformation: Theoretical and experimental analysis, International Journal of Solids and Structures, Vol. 202, pp. 787–797, (2020).
 
[10] Y. Xin, H. Wang, C. Wang, S. Cheng, Q. Zhao, Y. Sun, H. Gao, F. Ren, Properties and tunability of band gaps in innovative reentrant and star-shaped hybrid honeycomb metamaterials, Results in Physics, Vol. 24, Article No. 104024, (2021).
 
[11]         W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, F. Berto, Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review, Materials and Design, Vol. 180, Article No 107950, (2019).
 
[12] J. Shabanpour, S. Beyraghi, H. Oraizi, Reconfigurable honeycomb metamaterial absorber having incident angular stability, Scientific Reports, Vol. 10, Article No. 14920, (2020).
 
[13] J. Silverberg, A. Evans, L. McLeod, R. Hayward, T. Hull, C. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials, Science, Vol. 345, pp. 647–650, (2014).
 
[14] Y. Tang, G. Lin, S. Yang, Y. Yi, R. Kamien, J. Yin, Programmable Kiri-Kirigami Metamaterials, Advanced Material, Vol. 29, Article No. 1604262, (2017).
 
[15] A. Tran, M. Tran, Y. Wang, Constrained mixed-integer Gaussian mixture Bayesian optimization and its applications in designing fractal and auxetic metamaterials, Structural and Multidisciplinary Optimization, Vol. 59, pp. 2131–2154, (2019).
 
[16] Z. Li., Z. Luo, L. Zhang, C. Wang, Topological design of pentamode lattice metamaterials using a ground structure method, Materials & Design, Vol. 202, Article No. 109523, (2021).
 
[17] Y. Huang, X. Lu, G. Liang, Z. Xu, Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes, Physics Letters A, Vol. 380, No. 13, pp. 1334–1338, (2016).
 
[18] B. Chen, L. Chen, B. Du, H. Liu, W. Li, D. Fang, Novel multifunctional negative stiffness mechanical metamaterial structure: Tailored functions of multi-stable and compressive mono-stable, Composite Part B Engineering, Vol. 204, Article No. 108501, (2021).
 
[19] X. M. Yiy, Y. Xiaoying, S. Jiahu, Y. Xiaolei, G. Arash, R. Jianhua, H. Xiaodong, Z. Shiwei, Designing orthotropic materials for negative or zero compressibility, International Journal of Solids and Structures, Vol. 51, pp. 4038–4051, (2014).
 
[20] R. Gatt, J. Grima, Negative compressibility, Physica Status Solidi - Rapid Research Letters, Vol. 2, pp. 236–238, (2008).
 
[21] C. Wang, W. Wang, W. Zhao, Y. Wang, G. Zhou, Structure design and multi-objective optimization of a novel NPR bumper system, Composites Part B: Engineering, Vol. 153, pp. 78–96, (2018).
 
[22] J. Ju, D. Kim, K. Kim, Flexible cellular solid spokes of a non-pneumatic tire, Composite Structures, Vol. 94, pp. 2285–2295, (2012).
 
[23] W. Miller, C. Smith, D. Mackenzie, K. Evans, Negative thermal expansion: a review, Journal of Materials Science, Vol. 44, pp. 5441–5451, (2009).
 
[24] K. Takenaka, Negative thermal expansion materials: technological key for control of thermal expansion, Science and Technology of Advanced Materials, Vol. 13, pp. 013001, (2012).
 
[25] S. Montgomery, X. Kuang, C. Armstrong, H. Qi., Recent advances in additive manufacturing of active mechanical metamaterials, Current Opinion in Solid State and Materials Science, Vol. 24, Article No 100869,(2020).
 
[26] Standard Document, Standard Terminology for Additive Manufacturing Technologies, Standard No. F2792, ASTM International, (2012).
 
[27] M. Bodagh, A. Damanpack, G. Hu, W. Liao, Large Deformations of Soft Metamaterials Fabricated by 3D Printing, Materials and Design, Vol. 131, pp. 81–91, (2017).
 
[28] T. Frenzel, M. Kadic, M. Wegener, Three-dimensional mechanical metamaterials with a twist, Science, Vol. 358, pp. 1072–1074, (2017).
 
[29] G. Andrew, P. Stefano, Q. Tian, F. Peer, Auxetic metamaterial simplifies soft robot design, IEEE International Conference on Robotics and Automation (ICRA), (2016), DOI: 10.1109/ICRA.2016.7487701.
 
[30] R. Hedayati, A. Leeflang, A. Zadpoor, Additively manufactured metallic pentamode meta-materials, Applied Physics Letters, Vol. 110, Article No. 91905, (2017).
 
[31] Y. Shangqin, S. Fei, B. Jiaming, K. Chee, W. Jun, Z. Kun, 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization, Materials and Design, Vol. 120, pp. 317-327, (2017).
 
[32] Y. Li, H. Ola, C. Denis, W. Harvey, Additive Manufacturing of Metal Cellular Structures: Design and Fabrication, The Minerals, Metals & Materials Society, Vol. 67, pp. 608–615, (2015).
 
[33] P. Rastogi, B. Kandasubramanian, Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing, Chemical Engineering Journal, Vol. 366, pp. 264–304, (2019).
 
[34] S. Dezianian. M. Azadi, S.M. Esfarjani. An overview of the incremental production process with five-dimensional printers and their applications, Vol. 6, No. 1, pp. 51- 60 (in Persianفارسی )­