بررسی عددی تأثیر گرفتگی رگ روی تنش و دمای جریان خون تحت یک شار حرارتی ثابت

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

2 کارشناس، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

چکیده

یکی از رایج ­ترین بیماری­ های قلبی- عروقی گرفتگی رگ­ها می ­باشد. در این پژوهش جریان خون با مدل­ های مختلف لزجت در یک رگ دارای گرفتگی با فرض دیواره بررسی شده است. هندسه گرفتگی با رابطه کسینوسی مدل شده است. معادلات مسأله شامل پیوستگی، ممنتوم، انرژی، قانون هوک برای ماده الاستیک خطی و روش (ALE) برای برهم کنش سیال- جامد به صورت کد المان محدود تعریف و حل شده ­اند. نتایج نشان داد، دیواره رگ در نزدیکی گرفتگی ­بیش­ترین جابجایی را دارد. فرض بر هم­ کنش سیال­- جامد باعث کاهش تنش برشی دیواره می­ گردد. برای مثال، بیشینه مقدار تنش برشی دیواره در ناحیه گرفتگی با مدل لزجت کاریو از 32/2 به 23/2 و با مدل لزجت نیوتنی از 1/2 به 2 کاهش می ­یابد. همچنین مشاهده گردید، اعمال شار حرارتی در سطح بیرونی دیواره رگ باعث افزایش قابل ملاحظه ­ای دمای جریان خون و دیواره در ناحیه گرفتگی می شود.

کلیدواژه‌ها

موضوعات


[1] Paul, M. C., Larman, A., Investigation of spiral blood flow in a model of arterial stenosis, Medical engineering & physics, vol. 31, no. 9, pp. 1195-1203, (2009).
 
[2] Ahmed, S. A., Giddens, D. P., Pulsatile poststenotic flow studies with laser Doppler anemometry, Journal of biomechanics, vol. 17, no. 9, pp. 695-705, (1984).
 
[3] Ghalichi, F., Deng, X., De Champlain, A., Douville, Y., King, M., Guidoin, R., Low Reynolds number turbulence modeling of blood flow in arterial stenoses, Biorheology, vol. 3, no. 4, pp. 281-294, (1998).
 
[4] Sarifuddin, Chakravarty, S., Mandal, P., Layek, G., Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses, Journal of medical engineering & technology, vol. 32, no. 5, pp. 385-399, (2008).
 
[5] Bhatnagar, A., Shrivastav, R. K., Malli, Singh, A. K., A numerical analysis for the effect of slip velocity and stenosis shape on non-newtonian flow of blood,   International Journal of Engineering, vol. 28, no. 3, pp. 440-446, (2015).
 
[6] Yan, S. R., Zarringhalam, M., Toghraie, D., Foong, L. K., Talebizadehsardari, P., Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles, Computer Methods and Programs in Biomedicine, pp. 105434, (2020).
 
[7] Jahangiri, M., Saghafian, M., Sadeghi, M. R., Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery, Journal of Computational and Applied Research in Mechanical Engineering, vol. 7, no. 2, pp. 199-207, (2018).
 
[8] Malota, Z., Glowacki, J., Sadowski, W., Kostur, M., Numerical analysis of the impact of flow rate, heart rate, vessel geometry and degree of stenosis on coronary hemodynamic indices, BMC cardiovascular disorders, vol. 18, no. 1, pp. 132, (2018).
 
[9] Biglarian, M., Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models, Computer methods and programs in biomedicine, vol. 185, pp. 105170, (2020).
 
[10] Jamali, M. S. A., Ismail, Z., Simulation of Heat Transfer on Blood Flow through a Stenosed Bifurcated Artery, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 60, pp. 310-323, (2019).
 
[11] Keyhanpour, M., Ghasemi, M., Numerical Analysis of Hyperthermia on the Damage of cancerous Tissue by injection of Magnetic nanoparticles under the Influence of External Magnetic Field, Journal of Mechanical Engineering, vol. 49, no. 4, pp. 213-221, (2019). (in Persian)
 
[12] Shuib, A., Hoskins, P., Easson, W., Experimental investigation of particle distribution in a flow through a stenosed artery, Journal of mechanical science and technology, vol. 25, no. 2, pp. 357-364, (2011).
 
[13] Fox, R. W., Mc Donald, A. T., Introduction to fluid mechanics, John Wiley and Sons Inc., New Jersey, United States, (1985).
 
[14] Bessonov, N., Sequeira, A., Simakov, S., Vassilevskii, Y., Volpert, V., Methods of blood flow modelling, Mathematical modelling of natural phenomena, vol. 11, no. 1, pp. 1-25,  (2016).
 
[15] Soulis, J. V., Giannoglou, G. D., Chatzizisis, Y. S., Seralidou, K. V., Parcharidis, G. E., Louridas, G. E., Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery, Medical engineering & physics, vol. 30, no. 1, pp. 9-19, (2008).
 
[16] Hund, S. J., Kameneva, M. V., Antaki, J. F., A quasi-mechanistic mathematical representation for blood viscosity, Fluids, vol. 2, no. 1, pp. 10, (2017).
 
[17] Waite, L., Fine, J., Applied biofluid mechanics. McGraw-Hill Education, New York, United States, (2017).
 
[18] Keyhanpour, M., Ghasemi, M., Numerical Analysis of Heat and Mass Transfer of Magnetic Nanoparticles in a Non-Newtonian Blood Flow, under Influence of Magnetic Field, Fluid Mechanics & Aerodynamics Journal, vol. 7, no. 2, pp. 19-31, (2019). (in Persian)
 
[19] Keyhanpour, M., Ghasemi, M., The Influece of Magnetic Heat Sources on Damage of Cancerous Tissue, Modares Mechanical Engineering, vol. 18, no. 5, pp. 163-171, (2018). (in Persian)
 
[20] Raback, p., Ruokolainen, J., Lyly, M., Jarvinen, E., Fluid-structure interaction boundary conditions by artificial compressibility, in ECCOMAS Computational Fluid Dynamics Conference, Swansea, Wales, United Kingdom, September 2-4, (2001).
 
[21] Jahangiri, M., Saghafian, M., Sadeghi, M. R., Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid-solid interaction, Computational and mathematical methods in medicine, vol. 2015, pp. 613-623, (2015).
 
[22] Buriev, Kim, T. D., Seo, T. W., Fluid-structure interactions of physiological flow in stenosed artery, Korea-Australia Rheology Journal, vol. 21, no. 1, pp. 36-49, (2009).
 
[23] Nejad, A. A., Talebi, Z., Cheraghali, D., Shahbani-Zahiri, A., Norouzi, M., Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases, Computer methods and programs in biomedicine, vol. 154, pp. 109-122, (2018).
 
[24] Karami, F., Hossainpour, S., Ghalichi, F., Numerical simulation of low-density lipoprotein mass transport in human arterial stenosis–Calculation of the filtration velocity, Bio-Medical Materials and Engineering, vol. 29, no. 1, pp. 95-108, (2018).