بررسی مدل‌های مورد استفاده برای شبیه‌سازی آتش‌سوزی و انتشار دود در فضاهای سربسته

نوع مقاله : علمی ترویجی

نویسندگان

1 دکترای مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، شیراز

2 استادیار دانشکدة مهندسی مکانیک و هوافضا، دانشگاه صنعتی شیراز، شیراز

چکیده

شبیه‌سازی گسترش آتش و انتشار دود در فضاهای بسته از اهمیت ویژه‌ای برخوردار است و به‌وسیلة آن می‌توان نقائص و مشکلات سیستم کنترل آتش را مشخص نمود و حتی پیشنهاداتی برای تغییر وضعیت معماری فضای مورد نظر ارائه داد. به‌طور کلی مدل‌های مورد استفاده برای شبیه‌سازی آتش و انتشار دود را می‌توان به دو دستة مدل‌های ناحیه‌ای و مدل‌های میدانی تقسیم کرد. مدل‌های ناحیه‌ای یک‌بعدی‌اند و ساده‌ترین نوع آن، مدل‌های کامپیوتری می‌باشد. از طرفی، مدل‌های میدانی برای فضاهای دوبعدی یا سه‌بعدی مورد استفاده قرار می‌گیرند و در واقع همان روش‌های شبیه‌سازی عددی هستند که برای حل به کامپیوتر‌های قدرتمند نیاز دارند. در این مقاله ویژگی‌های آتش و دود، خطرات ناشی از آن در فضاهای بسته و برخی پارامترهای مهم برای شبیه‌سازی آتش از جمله نرخ تولید دود و نرخ حرارت آزادشده مورد بررسی قرار گرفته است. سپس مدل‌‌های مختلف مورد استفاده برای شبیه‌سازی آتش و انتشار دود ارائه و مورد مطالعه قرار گرفته است.

کلیدواژه‌ها


[1] A. Haack, Technical Report-Part 1-Design Fire Scenarios, Thematic network on fires in tunnels (FIT), European Commission under the 5th Framework Program 2004, 2001.
[2] R. Friedman, An international survey of computer models for fire and smoke, Journal of fire protection engineering, Vol. 4, No. 3, pp. 81-92, 1992.
[3] M. Faghri, B. Sundén, eds. Transport phenomena in fires, Vol. 20, WIT press, 2008.
[4] R. O. Carvel, Fire size in tunnels, 2004.
[5] H. Ingason, Design fires in tunnels, In Conference proceedings of Asiaflam, Vol. 95, pp. 77-86, 2006.
[6] K. M. Butler, G. W. Mulholland, Generation and transport of smoke components, Fire Technology, Vol. 40, No. 2, pp. 149-176, 2004.
[7] J. M. Sauer, E. E. Smith, Mathematical model of a ventilation controlled compartment fire, Journal of fire sciences, Vol. 1, No. 4, pp. 235-254, 1983.
[8] B. Karlsson, A mathematical model for calculating heat release rate in the room corner test, Fire safety journal, Vol. 20, No. 2, pp. 93-113, 1993.
[9] M. Konecki, M. Polka, Extension of the Fire Zone Model with Some Detailed Mass and Heat Transfer, Journal of Applied Sciences Research, pp. 212-220, 2009.
[10] T. Tanaka, A model of multiroom fire spread." Fire Science and Technology, Vol. 3, No. 2, pp. 105-121, 1983.
[11] W. Jones, R. D. Peacock, G. P. Forney, P. A. Reneke, Consolidated Model of Fire Growth and Smoke Transport, NIST Special Publication 1026, Technical Reference Guide, NIST Special Publication 1041, User's Guide, 2006.
[12] Olenick, Stephen M., and Douglas J. Carpenter. "An updated international survey of computer models for fire and smoke." Journal of fire protection engineering 13, no. 2 (2003): 87-110.
[13] W. D. Walton, D. J. Carpenter, C. B. Wood, Zone computer fire models for enclosures, In SFPE handbook of fire protection engineering, Springer New York, pp. 1024-1033, 2016.
[14] W. D. Walton, ASET-B: A room fire program for personal computers, Fire Technology, Vol. 21, No. 4, pp. 293-309, 1985.
[15] V. Ho, N. Siu, G. Apostolakis, COMPBRN III-A fire hazard model for risk analysis, Fire safety journal, Vol. 13, No. 2, pp. 137-154, 1988.
[16] V. Babrauskas, COMPF2-A Program for Calculating Post-Flashover Fire Temperatures Final Report, NBS TN, Vol. 991, 1979.
[17] M. R. Curtat, X. E. Bodart, 1st Symposium International Association for Fire Safety Science, Hemisphere Publications, Gaithersburg, MD, p. 637, 1986.
[18] W. Jones, G. P. Forney, R. D. Peacock, P. A. Reneke, A technical reference for CFAST: an engineering tool for estimating fire and smoke transport, NIST TN, Vol. 1431, 2000.
[19] C. A. J. Wade, J. R. Barnett, A Room Corner Fire Growth & Zone Model for Lining Material, Second International Conference on Fire Research and Engineering (ICFRE2), National Institute of Standards and Technology and Society of Fire Protection Engineers, Gaithersburg, MD, pp. 106-117, 1998.
[20] W. Davis, The Zone Fire Model JET: A Model for the Prediction of Detector Activation and Gas Temperature in the Presence of a Smoke Layer, US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
[21] H. E. Mitler, J. A. Rockett, Users' guide to FIRST, a comprehensive single-room fire model, US Department of Commerce, National Bureau of Standards, 1987.
[22] H. E. Nelson, FPETOOL: Fire protection engineering tools for hazard estimation, Center for Fire Research, 1990.
[23] L. Y. Cooper, Estimating the environment and the response of sprinkler links in compartment fires with draft curtains and fusible link-actuated ceiling vents-Theory, Fire Safety Journal, Vol. 16, No. 2, pp. 137-163, 1990.
[24] D. B. Satterfield, J. R. Barnett, User’s Guide to WPI-HARVARD Version 2 (WPI-2)-A Compartment Fire Model, Worcester Polytechnic Institute, Center for Fire Safety Studies, Worcester, MA, 1990.
[25] C. Xiaojun, Y. Lizhong, D. Zhihua, F. Weicheng, A multi-layer zone model for predicting fire behavior in a fire room, Fire safety journal, Vol. 40, No. 3, pp. 267-281, 2005.
[26] C. Xiaojun, Simulation of temperature and smoke distribution of a tunnel fire based on modifications of multi-layer zone model, Tunnelling and Underground Space Technology, Vol. 23, No. 1, pp. 75-79, 2008.
[27] L. Yi, Y. Gao, J. L. Niu, S. J. Yang, Study on effect of wind on natural smoke exhaust of enclosure fire with a two-layer zone model, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 119, pp. 28-38, 2013.
[28] Y. H. Lee, J. H. Kim, J. E. Yang, Application of the CFAST zone model to the Fire PSA, Nuclear Engineering and Design, Vol. 240, No. 10, pp. 3571-3576, 2010.
[29] S. Jain, S. Kumar, S. Kumar, T. P. Sharma, Numerical simulation of fire in a tunnel: Comparative study of CFAST and CFX predictions, Tunnelling and Underground Space Technology, Vol. 23, No. 2, pp. 160-170, 2008.
[30] B. E. Vembe, K. E. Rain, J. K. Holen, N. I. Lilleheie, B. Grimsmo, Kameleon FireEx 2000 User Manual,’ Computational Industry Technology, 2008.
[31] FM Global, accessed September 30, 2015, FireFOAM, https://github.com/fireFoam-dev.
[32] Y. Wang, P. Chatterjee, J. L. Ris, Large eddy simulation of fire plumes, Proceedings of the Combustion Institute, Vol. 33, No. 2, pp. 2473-2480, 2011.
[33] Y. Wang, K. Meredith, X. Zhou, P. Chatterjee, Y. Xin, M. Chaos, N. Ren, S. Dorofeev, Numerical simulation of sprinkler suppression of rack storage fires, Fire Safety Science, Vol. 11, pp. 1170-1183, 2014.
[34] W. Binbin, Comparative research on FLUENT and FDS's numerical simulation of smoke spread in subway platform fire, Procedia EngineeringVol. 26, pp. 1065-1075, 2011.
[35] Q. Li, Z. Fang, J. Yuan, Z. Tang, Numerical Simulation on Impacts of Longitudinal Ventilation on Tunnel Fire Detection, Procedia Engineering, Vol. 135, pp. 274-279, 2016.
[36] Y. F. Wang, X. F. Sun, S. Liu, P. N. Yan, T. Qin, B. Zhang, Simulation of back-layering length in tunnel fire with vertical shafts, Applied Thermal Engineering, Vol. 109, pp. 344-35, 2016.
[37] S. Vilfayeau, J. P. White, P. B. Sunderland, A. W. Marshall, A. Trouvé, Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow, Fire Safety Journal, Vol. 86, pp. 16-31v 2016.