مروری بر تحلیل خستگی میل‌لنگ

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی کارشناسی‌ ارشد، دانشگاه صنعتی مالک ‌اشتر، شیراز

2 علی عبداللهی‌فر، استادیار، دانشگاه صنعتی مالک ‌اشتر، شیراز

3 سید مسعود هاشمی، استادیار، دانشگاه صنعتی مالک ‌اشتر، شیراز

چکیده

میل‌لنگ از جمله قطعات مهم و پیچیده در انواع موتور است. اهمیت تجزیه و تحلیل خستگی و تخمین عمر آن نیز بر کسی پوشیده نیست. برای طراحی میل‌لنگ چالش‌های بسیاری از جمله بار مفید خودرو، وزن کمتر درخواستی، بازده و عمر دوام بیشتر مورد نظر است. میل‌لنگ طی عمر کارکرد خود متحمل بارهای خمشی و پیچشی متناوب می‌شود و شکست در آن سب ایجاد خسارت جدی به موتور می‌گردد، بنابراین در زمان طراحی باید استحکام خستگی آن لحاظ شود. در این مقاله، مروری جامع بر پژوهش‌های متنوع انجام‌شده در حوزه‌های مکانیک شکست، تحلیل خستگی و تخمین عمر میل‌لنگ مطرح شده است. برای این منظور، نخست روش‌های آزمایشگاهی، تحلیلی و عددی محاسبة شاخص‌های خستگی و تخمین عمر میل‌لنگ بیان می‌شود، سپس روش‌های تشخیص و ارزیابی مکان و اندازة ترک ارائه می‌گردد. در نهایت به بررسی روش‌های عملی افزایش عملکرد خستگی و بهینه‌سازی این قطعه پرداخته می‌شود.

کلیدواژه‌ها


[1] M. Guagliano, A. Terranova, L. Vergani, Theoretical and experimental study of the stress concentration factor in diesel engine crankshafts, Journal of mechanical design, Vol. 115, No. 1, pp. 47-52, 1993.
[2] E. J. Jensen, Crankshaft strength through laboratory testing, No. 700526, SAE Technical Paper, 1970.
[3] R. K. Pandey, Failure of diesel-engine crankshafts, Engineering failure analysis, Vol. 10, No. 2, pp. 165-175, 2003.
[4] T. Kamimura, Effects of fillet rolling on fatigue strength of ductile cast iron crankshaft, No. 852204. SAE Technical Paper, 1985.
[5] W. Y. Chien, J. Pan, D. Close, S. Ho, Fatigue Analysis of Crankshaft Sections Under Bending with Consideration of Residual Stresses, International Journal of Fatigue, Vol. 27, pp. 1-19, 2005.
[6] F. Espadafor, J. Jiménez, B. Villanueva, M. T. García, Analysis of a diesel generator crankshaft failure, Engineering Failure Analysis, Vol. 16, No. 7, pp. 2333-2341, 2009.
[7] V. Infante, J. M. Silva, M. A. R. Silvestre, R. Baptista, Failure of a crankshaft of an aeroengine: A contribution for an accident investigation, Engineering failure analysis, Vol. 35, pp. 286-293, 2013.
[8] M. Fonte, B. Li, L. Reis, M. Freitas, Crankshaft failure analysis of a motor vehicle, Engineering failure analysis, Vol. 35, pp. 147-152, 2013.
[9] I. M. Quraishi, S. Madhavi, Fatigue Strength and Residual Stress Analysis of Deep Rolled Crankshafts.
[10] R. Gligorijevic, J. Jevtic, G. Vidanovic, N. Radojevic, Fatigue strength of nodular iron crankshafts, No. 2001-01-3412. SAE Technical Paper, 2001.
[11] S. K. Bhaumik, R. Rangaraju, M. A. Venkataswamy, T. A. Bhaskaran, M. A. Parameswara, Fatigue fracture of crankshaft of an aircraft engine, Engineering Failure Analysis, Vol. 9, No. 3, pp. 255-263, 2002.
[12] X. You, X. Ma, B. Wen, Analysis on dynamic characteristics of internal combustion engine crankshaft system, In 2009 International Conference on Measuring Technology and Mechatronics Automation, vol. 2, pp. 742-745, IEEE, 2009.
[13] Z. CHENG, G. CAI, X. ZHOU, Y. LI, Finite Element Analysis of YC6108 Diesel Engine Crankshaft, Equipment Manufacturing Technology, Vol. 1, p. 013, 2010.
[14] D. S. Patil, N. M. Morkane, V. B. Lomate, Design & Analysis of Crankshaft Bending Test Rig for Actual Engine Condition, 1st International and 16th National Conference on Machines and Mechanisms, Solapur, India, 2013.
[15] V. Prakash, K. Aprameyan, U. Shrinivasa, An FEM based approach to crankshaft dynamics and life estimation, No. 980565, SAE Technical Paper, 1998.
[16] J. P. Henry, J. Toplosky, M. Abramczuk, Crankshaft Durability Prediction-A New 3-D Approach, No. 920087, SAE Technical Paper, 1992.
[17] Z. Mourelatos, An analytical investigation of the crankshaft-flywheel bending vibrations for a V6 engine, No. 951276, SAE Technical Paper, 1995.
[18] R. Gundlach, M. Semchyshen, E. P. Whelan, Notch Sensitivity and Fatigue in Austempered Ductile Iron, No. 980685, SAE Technical Paper, 1998.
[19] J. Meng, Y. Liu, R. Liu, B. Zheng, Intension Analysis of 3-D Finite Element Analysis on 380 diesel crankshaft, In Computational and Information Sciences (ICCIS), 2010 International Conference on, pp. 1269-1272, IEEE, 2010.
[20] R. Garg, S. Baghla, Finite element analysis and optimization of crankshaft, International Journal of Engineering and Management Reaserch, Vol. 2, No. 6, pp. 26-31, 2012.
[21] K. Thriveni, B. JayaChandraiah, Modeling and Analysis of the Crankshaft Using Ansys Software, International Journal of Computational Engineering Research, Vol. 3, No. 5, pp. 84-88, 2013.
[22] B. Bagde, L. P. Raut, Finite Element Structural and Fatigue Analysis of Single Cylinder Engine Crank Shaft, In International Journal of Engineering Research and Technology, Vol. 2, No. 7 (July-2013), ESRSA Publications, 2013.
[23] J. Meng, Y. Liu, R. Liu, B. Zheng, 3-D Finite Element Analysis on 480 diesel crankshaft, In Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on, pp. 1-4. IEEE, 2010.
[24] J. Meng, Y. Liu, R. Liu, Finite element analysis of 4-cylinder diesel crankshaft, International Journal of Image, Graphics and Signal Processing, Vol. 3, No. 5, p. 22, 2011.
[25] K. S. Choi, J. Pan, Simulations of stress distributions in crankshaft sections under fillet rolling and bending fatigue tests, International Journal of Fatigue, Vol. 31, No. 3, pp. 544-557, 2009.
[26] G. Yingkui, Z. Zhibo, Strength analysis of diesel engine crankshaft based on PRO/E and ANSYS, In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Vol. 3, pp. 362-364, IEEE, 2011.
[27] A. Solanki, K. Tamboli, M. J. Zinjuwadia, Crankshaft Design and Optimization-A Review, In National Conference on Recent Trends in Engineering & Technology, pp. 13-14, 2011.
[28] R. J. Deshbhratar, Y. R. Suple, Analysis & Optimization of Crankshaft Using Fem, International Journal of Modern Engineering Research, Vol. 2, No. 5, pp. 3086-3088, 2012.
[29] F. Montazersadgh, A. Fatemi, Dynamic load and stress analysis of a crankshaft, No. 2007-01-0258, SAE Technical Paper, 2007.
[30] F. Montazersadgh, A. Fatemi, Stress analysis and optimization of crankshafts subject to dynamic loading, Final Project Report Submitted to the Forging Industry Educational Research Foundation and American Iron and Steel Institute, The University of Toledo, pp. 10-45, 2007.
[31] X. Lei, G. Zhang, J. Chen, S. Xigeng, G. Dong, Simulation on the motion of crankshaft with a slant crack in crankpin, Mechanical systems and signal processing, Vol. 21, No. 1, pp. 502-513, 2007.
[32] F. Montazersadgh, A. Fatemi, Optimization of a Forged Steel Crankshaft Subject to Dynamic Loading, SAE International Journal of Materials and Manufacturing, Vol. 1, No. 2008-01-0432, pp. 211-217, 2007.
[33] S. Ho, Y. Lee, H. Kang, C. J. Wang, Optimization of a crankshaft rolling process for durability, International Journal of Fatigue, Vol. 31, No. 5, pp. 799-808, 2009.
[34] Z. Guangming, J. Zhengfeng, Study on Torsional Stiffness of Engine Crankshaft, In Computer Science-Technology and Applications, 2009. IFCSTA'09. International Forum on, Vol. 3, pp. 431-435. IEEE, 2009.
[35] S. Ai-ling, Assessment of Residue Fatigue Life of Crankshaft Based on Theory of Fatigue Damage, In Intelligent Computation Technology and Automation (ICICTA), 2012 Fifth International Conference on, pp. 674-677, IEEE, 2012.
[36] X. Chen, X. Yu, B. Ji, Study of crankshaft strength based on iSIGHT platform and DOE methods, In 2010 International Conference on Measuring Technology and Mechatronics Automation, Vol. 3, pp. 548-551. IEEE, 2010.
[37] C. M. Balamurugan, R. Krishnaraj, M. Sakthivel, K. Kanthavel, M. G. Deepan Marudachalam, R. Palani, Computer Aided Modeling and Optimization of Crankshaft, International Journal of Scientific and Engineering Reseach, Vol. 2, Issue 8, 2011.
[38] Y. Gongzhi, Y. Hongliang, D. Shulin, Crankshaft dynamic strength analysis for marine diesel engine, In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Vol. 1, pp. 795-799, IEEE, 2011.
[39] B. Varun, D. Kumar, D. Kumar Xaxa, V. Uma Rani, M. Sreenivasa Rao, V. Theresa Vinayasheela, Vidya Dhamdhere et al, Stress Analysis and Optimization of Crankshafts Subject to Static Loading, IJECS 4, No. 10, 2015.
[40] W. Baxter, Detection of fatigue damage in crankshafts with the gel electrode, No. 930409, SAE Technical Paper, 1993.
[41] M. Guagliano, L. Vergani, A Simplified Approach to Crack Growth rediction in a Crankshaft, Fatigue and Fracture of Engineering Materials and Structures, Vol. 17, No. 11, pp. 1295, 1994.
[42] Regul'skii, M. N., A. D. Pogrebnyak, O. B. Balakovskii, Procedure and results of investigation into fatigue strength characteristics of motorcycle engine crankshafts, Strength of materials, Vol. 34, No. 6, pp. 629-635, 2002.
[43] C. Wang, C. Zhao, D. Wang, Analysis of an unusual crankshaft failure, Engineering Failure Analysis, Vol. 12, No. 3, pp. 465-473, 2005.
[44] F. S. Silva, Analysis of a vehicle crankshaft failure, Engineering Failure Analysis, Vol. 10, No. 5, pp. 605-616, 2003.
[45] V. Yu, W. Y. Chien, K. S. Choi, Jwo Pan, D. Close, Testing and modeling of frequency drops in resonant bending fatigue tests of notched crankshaft sections, No. 2004-01-1501, SAE Technical Paper, 2004.
[46] M. Fonte, M. De Freitas, Marine main engine crankshaft failure analysis: a case study, Engineering Failure Analysis, Vol. 16, No. 6, pp. 1940-1947, 2009.
[47] A. Ktari, Haddar, H. F. Ayedi, Fatigue fracture expertise of train engine crankshafts, Engineering failure analysis, Vol. 18, No. 3, pp. 1085-1093, 2011.
[48] J. A. Villanueva, F. J. Espadafor, F. C. Peragon, M. T. García, A methodology for cracks identification in large crankshafts Mechanical systems and signal processing, Vol. 25, No. 8, pp. 3168-3185, 2011.
[49] A. Patil, D. Gajanan, A. Kolhe, CRANKSHAFT FAILURE DUE TO FATIGUE-A, 2014.
[50] N. Nallicheri, J. P. Clark, F. R. Field, Material Alternatives for the Automotive Crankshaft; A Competitive Assessment Based on Manufacturing Economics, No. 910139, SAE Technical Paper, 1991.
[51] J. Hoffmann, R. J. Turonek, High performance forged steel crankshafts-Cost reduction opportunities, No. 920784, SAE Technical Paper, 1992.
[52] C. Pichard, C. Tomme, D. Rezel, Alternative Materials for the Manufacture of Automobile Components: Example of Industrial Development of a Micro-Alloyed Engineering Steel for the Production of Forged Crankshafts, New and Alternative Materials for the Automotive Industries, pp. 157-163, 1992.
[53] A. Mikulec, L. Reams, J. Chottiner, R. W. Page, So-duk Lee. Cranktrain component conceptual design and weight optimization, No. 980566, SAE Technical Paper, 1998.
[54] A. P. Druschitz, D. C. Fitzgerald, I. Hoegfeldt, Lightweight Crankshafts, SAE-Paper, 2006-01-00162006, 2006.
[55] J. Grum, Analysis of Residual Stresses in Main Crankshaft Bearings after Induction Surface Hardening and Finish Grinding, Journal of Automobile Engineering, Vol. 217, pp. 173-182, 2003.
[56] H. Park, Y. S. Ko, S. C. Jung. Fatigue life analysis of crankshaft at various surface treatments, No. 2001-01-3374, SAE Technical Paper, 2001.
[57] G. Castro, A. Fernández-Vicente, J. Cid, Influence of the nitriding time in the wear behaviour of an AISI H13 steel during a crankshaft forging process, Wear 263, No. 7, pp. 1375-1385, 2007.
[58] G. Çevik, R. Gürbüz, Evaluation of fatigue performance of a fillet rolled diesel engine crankshaft, Engineering Failure Analysis, Vol. 27, pp. 250-261, 2013.
[59] S. Shamasundar, Prediction of defects and analysis of grain flow in crank shaft forging by process modeling, No. 2004-01-1499, SAE Technical Paper, 2004.
[60] P. V. Spiteri, Y. L. Lee, R. Segar, An exploration of failure modes in rolled, ductile, cast-iron crankshafts using a resonant bending testing rig, No. 2005-01-1906, SAE Technical Paper, 2005.
[61] P. Spiteri, S. Ho, Y. L. Lee, Assessment of bending fatigue limit for crankshaft sections with inclusion of residual stresses, International journal of fatigue, Vol. 29, No. 2, pp. 318-329, 2007.