بررسی ویژگی‌های نانوسیالات و چالش‌های استـفاده از آنها برای بهبود انتقال حرارت

نوع مقاله: مقاله علمی ترویجی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک دانشگاه کاشان

2 دانشیار دانشکدة مهندسی مکانیک دانشگاه کاشان

چکیده

نانوسیالات خواص ترموفیزیکی سیال پایه را به‌شدت تغییر می‌دهند. پژوهش‌ها نشان می‌دهند که انتقال حرارت نانوسیالات نسبت به سیالات پایة رایج افزایش بسیار خوبی دارند. این رفتار به عواملی چون شکل نانوذرات، توزیع اندازه و کسر حجمی آنها، دما، ضریب هدایت حرارتی نانوذرات و سیال پایه بستگی دارد. این مقاله با تأکید بر افزایش انتقال حرارت نانوسیالات، مرور جدیدی بر فرمول‌بندی، پایداری، سازوکارهای ممکن برای افزایش هدایت حرارتی و مدل‌کردن عددی نانوسیال ارائه می‌دهد. در این مقاله ویژگی‌های انواع نانوسیالات (تهیه‌شده با نانوذرات اکسید آلومینا، اکسید مس، اکسید روی، مس و آهن که غالباً در تحقیقات نانوسیال استفاده می‌شوند و سیالات پایة معمولی کاربردی برای انتقال حرارت مانند آب، اتیلن گلیکول و روغن) به اجمال ارائه و نتایج حاصل از تحقیقات صورت‌گرفته با هم مقایسه می‌شوند. اما باید توجه داشت که به‌منظور درک تمامی عوامل مؤثر در افزایش ضریب هدایت حرارتی نانوسیالات به مطالعات محاسباتی و تجربی بیشتری نیاز است.

کلیدواژه‌ها


[1] Choi, S. Enhancing thermal conductivity of fluids with nanoparticles, In Development and applications of non-newtonian flows, edited by D.A. Siginer and H.P. Wang, New York: ASME, 1995, pp. 99-105.

[2] Hemmat, Esfe, M., S. Saedodin, O. Mahian, S. Wongwises, Thermal conductivity of Al2O3/water nanofluids Measurement, correlation, sensitivity analysis, and comparisons with literature reports, Springer, 2014.

[3]. Yimin Xuan, Wilfried Roetzel, “Conceptions for Heat Transfer Correlation of Nanofluids.” International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 3701-3707.

[4] Praveen K. Namburu a, Devdatta P. Kulkarni a, Debasmita Misra b, Debendra K. Das, “Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture.” Exp. Therm. Fluid Sci. 32 (2007):397–402.

[5] Singh, A. K., “Thermal Conductivity of Nanofluids.” Defence Science Journal, Vol. 58, 2008, pp. 600-607.

[6] Goharshadi, E.K., H. Ahmadzadeh, S. Samiee and M. Hadadian. "Nanofluids for Heat Transfer Enhancement-A Review " Phys. Chem. Res., Vol. 1, No. 1, 2013, pp. 1-33.

[7] Shen B. “Minimum quantity lubrication grinding using nanofluids”. PhD thesis.USA: University of Michigan; 2006.

[8] Nield, D., and Bejan, A., Convection in Porous Media, Springer, 2nd ed., 1999.

[9] Davis W. R., Hot-Wire Method for the Measurement of the Thermal Conductivity of Refractory Materials, in Maglić K D, Cezairliyan A, Peletsky V E, (Eds.) Compendium of Thermophysical Property Measurement Methods, Vol. 1 Survey of Measurement Techniques, 1984, New York, London, Plenum Press, p. 161.

[10] Wechsler A. E., the Probe Method for Measurement of Thermal Conductivity in Maglić K D, Cezairliyan A, Peletsky V E, (Eds.) Compendium of Thermophysical Property Measurement Methods, Vol. 2 Recommended Measurement Techniques and Practices, 1992, New York, London, Plenum Press, p. 281.

[11] Wang, X., X. Xu, S.U.S. Choi, “Thermal Conductivity of Nanoparticle–Fluid Mixture.” Journal of Thermophysics and Heat Transfer, Vol. 13, 1999, pp. 474– 480. 

[12] Roetzel, W., S. Prinzen, Y. Xuan, “Measurement of Thermal Diffusivity Using Temperature Oscillations”, in: C. Cremers, H. Fine (Eds.), Thermal Conductivity, Vol. 21, 1990, pp. 201-207.

[13] W. Czarnetzki, W. Roetzel, Temperature Oscillation Techniques for Simultaneous Measurement of Thermal Diffusivity and Conductivity, International Journal of Thermophysics, Vol. 16, 1995, pp. 413–422.

[14] Wang, Xiang-Qi, Arun S. Mujumdar, Heat Transfer Characteristics of Nanofluids: a review, International Journal of Thermal Sciences, Vol. 46, 2007, pp. 1-19.

[15] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei 4 (4) (1993) 227–233 (in Japanese).

[16] Pak, P.C., Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11 (2) (1998):151-170.

[17] Wang, X., X. Xu, S.U.-S. Choi, “Thermal conductivity of nanoparticles– fluid mixture.” J. Thermophys. Heat Transfer 13 (4) (1999):474–480.

[18] Maré, T., A.G. Schmitt, C.T. Nguyen, J. Miriel, G. Roy, Experimental heat transfer and viscosity study of nanofluids: water–c Al2O3, in: Proc. 2nd Int. Conf. Thermal Engrg. Theory and Applications, Paper No. 93, Al Ain, United Arab Emirates, January 3–6, 2006.

[19] Ojha, U., S. Das, S. Chakraborty, Stability, pH and viscosity relationships in zinc oxide based nanofluids subject to heating and cooling cycles, J. Mater. Sci. Eng. 4 (7) (2010):24–29.

[20] Nguyen, C.T., F. Desgranges, G. Roy, N. Galanis, T. Mare´ , S. Boucher, H. Angue Mintsa, Temperature and particle-size dependent viscosity data for waterbased nanofluids – hysteresis phenomenon, Int. J. Heat Fluid Flow 28 (6) (2007):1492–1506.

[21] Duangthongsuk, W., S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci. 33 (4) (2009):706–714.

[22] Lee, S.W., S.D. Park, S. Kang, I.C. Bang, J.H. Kim, Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, Int. J. Heat Mass Transfer 54 (1–3) (2011) 433–438.

[23] Longo, G.A., C. Zilio, Experimental measurement of thermophysical properties of oxide–water nanofluids down to ice-point, Exp. Therm. Fluid Sci. 35 (7) (2011):1313–1324.

[24] Chen, H., Y. Ding, C. Tan, Rheological behaviour of nanofluids, New J. Phys. 9 (2007) 367.

[25] Kole, M., T.K. Dey, Exp. Therm. Fluid Sci. 34 (2010) 677.

[26] Goharshadi, E.K., H. Ahmadzadeh, S. Samiee and M. Hadadian. "Nanofluids for Heat Transfer Enhancement-A Review." Phys. Chem. Res., Vol. 1, No. 1, June 2013, pp. 1-33

[27] Mansour, R.B., N. Galanis, C.T. Nguyen, Appl. Therm. Eng. 27 (2007) 240.

[28] Hojjat, M., S.G. Etemad, R. Bagheri, J. Thibault, International Commun. Heat Mass Tran. 38 (2011) 144.

[29] Hemmat, Esfe, M., S. Saedodin, "An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions", Journal of Experimental Thermal and Fluid Science 55 (2014):1–5.

[30] Ravikanth, S. Vajjha, Debendra K. Das, "Experimental determination of thermal conductivity of three nanofluids and development of new correlations", International Journal of Heat and Mass Transfer 52 (2009):4675–4682

[31] Hamilton, R., O. Crosser, "Thermal conductivity of heterogeneous two-component systems", I and EC Fundamentals 125 (3) (1962):187–191.

[32] Hemmat, Esfe, M., S. Saedodin, O. Mahian, S. Wongwises, "Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations", International Journal of Heat and Mass Transfer 73 (2014):186–194.

[33] Amrollahi, A., A. AHamidi and A.M. Rashidi, "The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid), Nanotechnology 19 (2008) 315701 (8pp).

[34] Goharshadi, E. K., H. Ahmadzadeh, S. Samiee and M. Hadadian, "Nanofluids for Heat Transfer Enhancement-A Review". Phys. Chem. Res., Vol. 1, No. 1, June 2013 PP. 1-33.

[35] Saidur, R., K.Y. Leong, H.A. Mohammad, "A review on applications and challenges of nanofluids.” Renewable and Sustainable Energy Reviews 15 (2011):1646–1668.