مطالعه پارامتری، تجزیه و تحلیل عملکرد یک آب شیرین ‌کن تقطیر چند اثره مجهز به ترموکمپرسور

نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران

2 دانشیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران

چکیده

در مطالعه حاضر، تحلیل پارامتری، تجزیه و تحلیل عملکرد یک آب شیرین‌ کن تقطیر چند مرحله ‌ای مجهز به ترموکمپرسور مورد بررسی قرار گرفته شده است. معادلات جرم، غلظت نمک، انرژی و اگزرژی برای تک ‌تک اجزای آب شیرین ‌کن نوشته شده و در ادامه بررسی و تحلیل این آب شیرین‌ کن با کمک نرم ‌افزار EES انجام شده است. در این مطالعه، تأثیر دمای TBT، میزان غلظت آب و تعداد اثرات بر دبی آب خنک ‌کننده کندانسور، دبی آب شیرین، نسبت عملکرد، مساحت مخصوص، میزان تخریب اگزرژی و راندمان اگزرژی مورد بررسی و تحلیل قرار گرفته است. نتایج نشان داد که آب شیرین ‌کن 8 مرحله‌ای بیشترین نسبت عملکرد را با توجه به شرایط ورودی سیستم دارا می ‌باشد. همچنین با توجه به تحلیل اگزرژی، اگزرژی تخریبی اواپراتورها (اثرات)، کندانسور، ترموکمپرسور و پمپ ‌ها به ترتیب برابر 5146، 3266، 1568 و 366 کیلووات است که بیشترین و کمترین میزان تخریب اگزرژی به ترتیب متعلق به اواپراتورها و پمپ ‌ها می ‌باشند. 

کلیدواژه‌ها

موضوعات


[1]  E. Rafat and M. Babaelahi, "Recovering waste heat of a solar hybrid power plant using a Kalina cycle and desalination unit: A sustainability (emergo-economic and emergo -environmenal) approach," Energy Conversion and Management, vol.224,p.113394,20,doi:https://doi.org/10.1016/j.enconman.2020.113394.
 
[2]  F. Hesari, F. Salimnezhad, M. H. K. Manesh, and M. R. Morad, "A novel configuration for low-grade heat-driven desalination based on cascade MED," Energy, vol. 229, p. 120657, 2021,doi:https://doi.org/10.1016/j.energy.2021.120657.
 
[3]  S. M. Alirahmi, S. B. Mousavi, A. R. Razmi, and P. Ahmadi, "A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units," Energy Conversion and Management, vol. 236, p.114053,2021,doi:https://doi.org/10.1016/j.enconman.2021.114053.
 
[4]  H. Rostamzadeh, H. Ghiasirad, M. Amidpour, and Y. Amidpour, "Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles," Desalination, vol. 477, p. 114261, 2020, doi: https://doi.org/10.1016/j.desal.2019.114261.
 
[5]  S. Sadri, M. Ameri, and R. H. Khoshkhoo, "Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept," Desalination, vol. 402, pp.97.108,2017,doi:https://doi.org/10.1016/j.desal.2016.09.029.
 
[6]  M. Moghimi, M. Emadi, A. M. Akbarpoor, and M. Mollaei, "Energy and exergy investigation of a combined cooling, heating, power generation, and seawater desalination system," Applied Thermal Engineering, vol. 140, pp. 814-827, 2018,doi:https://doi.org/10.1016/j.applthermaleng.2018.05.092.
 
[7]  C. Frantz and B. Seifert, "Thermal analysis of a multi effect distillation plant powered by a solar tower plant," Energy Procedia, vol. 69, pp. 1928-1937, 2015, doi: https://doi.org/10.1016/j.egypro.2015.03.190.
 
[8]  M. A. S. Eldean and A. Soliman, "A novel study of using oil refinery plants waste gases for thermal desalination and electric power generation: Energy, exergy & cost evaluations," Applied Energy, vol. 195, pp. 453-477, 2017, doi:https://doi.org/10.1016/j.apenergy.2017.03.052.
 
[9]  M. L. Elsayed, O. Mesalhy, R. H. Mohammed, and L. C. Chow, "Transient performance of MED processes with different feed configurations," Desalination, vol.438,pp.3753,2018,doi:https://doi.org/10.1016/j.desal.2018.03.016.
 
[10] S. E. Shakib, M. Amidpour, M. Boghrati, M. M. Ghafurian, and A. Esmaieli, "New approaches to low production cost and low emissions through hybrid MED-TVC+ RO desalination system coupled to a gas turbine cycle," Journal of Cleaner Production, vol. 295,p.126402,2021,doi:https://doi.org/10.1016/j.jclepro.2021.126402.
 
[11] A. Farsi and M. A. Rosen, "Assessment of a geothermal combined system with an organic Rankine cycle and multi-effect distillation desalination," Earth Systems and Environment, vol. 6, No. 1, pp. 15-27, 2022, doi: https://doi.org/10.1007/s41748-021-00275-w.
 
[12] M. Prajapati, M. Shah, and B. Soni, "A comprehensive review of the geothermal integrated multi-effect distillation (MED) desalination and its advancements," Groundwater for Sustainable Development, p. 100808, 2022, doi: https://doi.org/10.1016/j.gsd.2022.100808.
 
[13] B. Lin and M. Malmali, "Energy and exergy analysis of multi-stage vacuum membrane distillation integrated with mechanical vapor compression," Separation and Purification Technology, vol. 306, p. 122568, 2023, doi: https://doi.org/10.1016/j.seppur.2022.122568.
 
[14]‌S. Hilarydoss, "Techno-enviro-economic assessment of novel hybrid inclined-multi-effect vertical diffusion solar still for sustainable water distillation," Environmental Science and Pollution Research, vol. 30, No. 7, pp. 17280-17315,2023,doi:https://doi.org/10.1007/s11356-022-23286-0.
 
[15] S. Khanmohammadi, S. Razi, M. Delpisheh, and H. Panchal, "Thermodynamic modeling and multi-objective optimization of a solar-driven multi-generation system producing power and water," Desalination, vol. 545, p. 116158, 2023, doi:https://doi.org/10.1016/j.desal.2022.116158.
 
[16] F. M. Al-Fadhli et al., "Optimizing cogeneration and desalination plants by incorporating solar energy," Desalination, vol. 549, p. 116320, 2023, doi: https://doi.org/10.1016/j.desal.2022.116320.
 
[17] T. Khir, "Energy and Exergy Analysis of a Hybrid Solar Geothermal Med Desalination System,"doi:https://dx.doi.org/10.2139/ssrn.4443982.
 
[18] S. Aly, H. Manzoor, S. Simson, A. Abotaleb, J. Lawler, and A. N. Mabrouk, "Pilot testing of a novel Multi Effect Distillation (MED) technology for seawater desalination," Desalination, vol. 519, p. 115221, 2021, doi: https://doi.org/10.1016/j.desal.2021.115221.
 
[19] F. Musharavati and S. Khanmohammadi, "Design and exergy based optimization of a clean energy system with fuel Cell/MED and hydrogen storage option," International Journal of Hydrogen Energy, vol. 47, No. 62, pp. 26715-26727,2022,doi:https://doi.org/10.1016/j.ijhydene.2021.07.214.
 
[20] S. Jehandideh, H. Hassanzade, and S. E. Shakib, "Environmental assessment of a hybrid system composed of solid oxide fuel cell, gas turbine and multiple effect evaporation desalination system," Energy & Environment, vol. 32, No. 5, pp. 874-901, 2021, doi: https://doi.org/10.1177/0958305X20973575.
 
[21] M. Laissaoui, D. Nehari, A. Bouhalassa, M. Hazmoune, S. Lechehab, and A. Touil, "Thermodynamic analysis of combined CSP-MED desalination in Algeria," in 2015 3rd International Renewable and Sustainable Energy Conference, 2015:IEEE,pp.16,doi:https://doi.org/10.1109/IRSEC.2015.7455096.
 
[22] C. Wen, H. Ding, and Y. Yang, "Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system," Desalination, vol. 489, p. 114531, 2020, doi: https://doi.org/10.1016/j.desal.2020.114531.
 
[23] I. S. Al-Mutaz and I. Wazeer, "Current status and future directions of MED-TVC desalination technology," Desalination and Water Treatment, vol. 55, No. 1, pp. 1-9, 2015, doi: https://doi.org/10.1080/19443994.2014.910841.
[24] M. A. Abdelkareem, M. E. H. Assad, E. T. Sayed, and B. Soudan, "Recent progress in the use of renewable energy sources to power water desalination plants," Desalination, vol. 435, pp. 97.113,2018,doi:https://doi.org/10.1016/j.desal.2017.11.018.
 
[25] H. El‐Dessouky, I. Alatiqi, S. Bingulac, and H. Ettouney, "Steady‐state analysis of the multiple effect evaporation desalination process," Chemical Engineering & Technology: Industrial Chemistry‐ PlantEquipmen-ProcessEngineering‐ Biotechnology, vol.21,No.5,pp.437451,1998,doi:https://doi.org/10.1002/(SICI)1521-4125.
 
[26] P. Ahmadi, S. Khanmohammadi, F. Musharavati,and,M.Afrand,"Development,evaluation, and multi-objective optimization of a multi-effect desalination unit integrated with a gas turbine plant,"Applied Thermal Engineering, vol. 176, p. 115414, 2020, doi: https://doi.org/10.1016/j.applthermaleng.2020.115414.
 
[27] I. S. Al-Mutaz and I. Wazeer, "Development of a steady-state mathematical model for MEE-TVC desalination plants," Desalination, vol. 351,pp.9.18,2014,doi:https://doi.org/10.1016/j.desal.2014.07.018.
 
[28] M. L. Elsayed, O. Mesalhy, R. H. Mohammed, and L. C. Chow, "Exergy and thermo-economic analysis for MED-TVC desalination systems," Desalination, vol. 447, pp. 29-42, 2018, doi: https://doi.org/10.1016/j.desal.2018.06.008.
 
[29] N. Eshoul, A. Almutairi, R. Lamidi, H. Alhajeri, and A. Alenezi, "Energetic, exergetic, and economic analysis of MED-TVC water desalination plant with and without preheating," Water, vol. 10, No. 3, p. 305, 2018, doi: https://doi.org/10.3390/w10030305.
 
[30] H. B. Harandi, A. Asadi, M. Rahnama, Z.-G. Shen, and P.-C. Sui, "Modeling and multi-objective optimization of integrated MED–TVC desalination system and gas power plant for waste heat harvesting," Computers & Chemical Engineering,vol.149,p.107294,2021,doi:https://doi.org/10.1016/j.compchemeng.2021.107294.
 
[31] R. Kamali, A. Abbassi, S. S. Vanini, and M. S. Avval, "Thermodynamic design and parametric study of MED-TVC," Desalination, vol. 222, No. 1-3,  pp. 596 - 604, 2008, doi:https://doi.org/10.1016/j.desal.2007.01.120.
 
[32] A. Almutairi, P. Pilidis, N. Al-Mutawa, and M. Al-Weshahi, "Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance," Applied Thermal Engineering, vol.103,pp.77.91,2016,doi:https://doi.org/10.1016/j.applthermaleng.2016.02.121.
 
[33] M. Yadegari and A. Bak Khoshnevis, "Investigation of entropy generation, efficiency, static and ideal pressure recovery coefficient in curved annular diffusers," The European Physical Journal Plus, vol. 136, pp. 1-19, 2021, doi:https://doi.org/10.1140/epjp/s13360-021-01071-1.
 
[34] R. Ghasemiasl, M. A. Javadi, M. Nezamabadi, and M. Sharifpur, "Exergetic and economic optimization of a solar-based cogeneration system applicable for desalination and power production," Journal of Thermal Analysis and Calorimetry, vol. 145, pp. 993-1003,2021, doi: https://doi.org/10.1007/s10973-020-10242-8.