مروری بر طراحی و ساخت بازوهای بسیار-افزونه با تحریک ناپیوسته

نوع مقاله : مقاله مروری

نویسندگان

1 دانشیار، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد ساوه، ساوه

2 استادیار، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد ساوه، ساوه

چکیده

بازوهای بسیار-افزونه از روی هم چیده شدن چند مکانیزم موازی به عنوان پودمان، ایجاد می شوند. اگر تمام عملگرهای این بازوها ناپیوسته باشند به آنها بازوهای بسیار-افزونه با تحریک ناپیوسته گفته می شود. عملگرهای ناپیوسته تنها به چند وضعیت محدود قابل تحریک هستند و نسبت به حالت معمولی پیوسته، کنترل ساده تر، تکرارپذیری بیشتر، دقت بالاتر و قیمت کمتری دارند. تعداد نقاط قابل دسترسی در بازوهای ناپیوسته محدود است و تعقیب مسیر با آنها به صورت تکه تکه، با سرعت غیر یکنواخت و با تقریب صورت می گیرد. بنابراین در اغلب موارد ترجیح داده می شود که از بازوهایی با تحریک پیوسته استفاده شود و استفاده از بازوهای ناپیوسته به موارد خاصی محدود می شود. به عنوان مثال قابلیت استفاده از عملگرهای دو حالته ساده، سبک، کم حجم، ارزان و با مصرف انرژی پایین در این نوع بازوها باعث شده بتوان از آنها در کاوش های فضایی، مصارف پزشکی از قبیل درون بینی رباتیک و آموزش رباتیک استفاده کرد. در این مقاله انواع مختلفی از این ربات ها که تا کنون ساخته شده اند، از لحاظ طراحی و قابلیت هایی که دارند، بررسی خواهد شد تا از این طریق طراحان در آینده بتوانند موارد بهتری را طراحی کنند و از مزایای این ربات ها استفاده کنند.

کلیدواژه‌ها

موضوعات


[1] D. L. Pieper, “The kinematics of manipulators under computer control,” Stanford University, 1969. https://www-proquest-com.access.semantak.com/dissertations-theses/kinematics-manipulators-under-computer-control/docview/302481631/se-2?accountid=173708.
 
[2] G. S. Chirikjian, “A binary paradigm for robotic manipulators,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, 1994, pp. 3063-3069. https://doi.org/10.1109/ROBOT.1994.351099.
 
[3] A. Motahari, H. Zohoor and M. H. Korayem, “A new inverse kinematic algorithm for discretely actuated hyper-redundant manipulators,” Latin American applied research, vol. 43, no. 2, pp. 161-168, 2013. http://www.scielo.org.ar/scielo.php?pid=S0327-07932013000200009&script=sci_arttext.
 
[4] A. Motahari, H. Zohoor and M. H. Korayem, “Discrete kinematic synthesis of discretely actuated hyper-redundant manipulators,” Robotica, vol. 31, no. 7, pp. 1073-1084, 2013. https://doi.org/10.1017/S0263574713000337.
 
[5] A. Motahari, H. Zohoor and M. H. Korayem, “A new obstacle avoidance method for discretely actuated hyper-redundant manipulators,” Scientia Iranica, vol. 19, no. 4, pp. 1081-1091, 2012. https://doi.org/10.1016/j.scient.2012.06.017.
 
[6] A. Motahari, H. Zohoor and M. H. Korayem, “A new motion planning method for discretely actuated hyper-redundant manipulators,” Robotica, vol. 35, no. 1, pp. 101-118, 2017. https://doi.org/10.1017/S0263574714002963.
 
[7] Y. Chi, Y. Tang, H. Liu and J. Yin, “Leveraging monostable and bistable pre‐curved bilayer actuators for high‐performance multitask soft robots,” Advanced Materials Technologies, vol. 5, no. 9, p. 2000370, 2020. https://doi.org/10.1002/admt.202000370.
 
[8] Y. Lin, C. Zhang, W. Tang, Z. Jiao, J. Wang, W. Wang, Y. Zhong et al., “A Bioinspired Stress‐Response Strategy for High‐Speed Soft Grippers,” Advanced Science, vol. 8, no. 21, p. 2102539, 2021. https://doi.org/10.1002/advs.202102539.
 
[9] X. Wang, A. Khara and C. Chen, “A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability,” Bioinspiration & Biomimetics, vol. 15, no. 5, p. 056017, 2020. https://doi.org/10.1088/1748-3190/aba091.
 
[10] M. Mungekar, L. Ma, W. Yan, V. Kackar, S. Shokrzadeh and M. K. Jawed, “Design of Bistable Soft Deployable Structures via a Kirigami‐Inspired Planar Fabrication Approach,” Advanced Materials Technologies, vol. 11, no. 2, p. 2300088, 2023. https://doi.org/10.1002/admt.202300088.
 
[11] X. Wang, H. Zhou, H. Kang, W. Au and C. Chen, “Bio-inspired soft bistable actuator with dual actuations,” Smart Materials and Structures, vol. 30, no. 12, p. 125001, 2021. https://doi.org/10.1088/1361-665X/ac2e19.
 
[12] J. McWilliams, Y. Yuan, J. Friedman and C. Sung, “Push-on push-off: A compliant bistable gripper with mechanical sensing and actuation,” in 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 2021, pp. 622-629. https://doi.org/10.1109/RoboSoft51838.2021.9479209.
 
[13] Y. Tang, Y. Chi, J. Sun, T.-H. Huang, O. H. Maghsoudi, A. Spence, J. Zhao, H. Su and J. Yin, “Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots,” Science advances, vol. 6, no. 19, p. eaaz6912, 2020. https://doi.org/10.1126/sciadv.aaz6912.
 
[14] R. Masana, S. Khazaaleh, H. Alhussein, R. S. Crespo and M. F. Daqaq, “An origami-inspired dynamically actuated binary switch,” Applied Physics Letters, vol. 117, no. 8, p. 081901, 2020. https://doi.org/10.1063/5.0010236.
 
[15] L. Cappello, M. Xiloyannis, B. K. Dinh, A. Pirrera, F. Mattioni and L. Masia, “Multistable series elastic actuators: Design and control,” Robotics and Autonomous Systems, vol. 118, p. 167-178, 2019. https://doi.org/10.1016/j.robot.2019.04.014.
 
[16] D. Dragone, L. Randazzini, A. Capace, F. Nesci, C. Cosentino, F. Amato, E. De Momi, R. Colao, L. Masia and A. Merola, “Design, Computational Modelling and Experimental Characterization of Bistable Hybrid Soft Actuators for a Controllable-Compliance Joint of an Exoskeleton Rehabilitation Robot,” Actuators, vol. 11, no. 2, p. 32, 2022. https://doi.org/10.3390/act11020032.
 
[17] S. J. Lee, A. M. Bilton and S. Dubowsky, “On the kinematics of solar mirrors using massively parallel binary actuation,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 44106, pp. 1177-1186, 2010. https://doi.org/10.1115/DETC2010-28875.
 
[18] S. M. Rudolph, M. W. Nurnberger, H. F. Alqadah and J. P. Bobak, “Ultra-Low-Loss, Binary-State Elements for a Mechanically Actuated Reconfigurable Reflectarray,” in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 1951-1952. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889144.
 
[19] Q. Ze, S. Wu, J. Dai, S. Leanza, G. Ikeda, P. C. Yang, G. Iaccarino and R. R. Zhao, “Spinning-enabled wireless amphibious origami millirobot,” Nature Communications, vol. 13, no. 1, p. 3118, 2022. https://doi.org/10.1038/s41467-022-30802-w.
 
[20] A. Mohand-Ousaid, I. Bouhadda, G. Bourbon, P. Le Moal, Y. Haddab and P. Lutz, “Compact Digital Microrobot Based on Multistable Modules,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1926-1933, 2021. https://doi.org/10.1109/LRA.2021.3061003.
 
[21] H. Hussein, I. Bouhadda, A. Mohand-Ousaid, G. Bourbon, P. Le Moal, Y. Haddab and P. Lutz, “Design and fabrication of novel discrete actuators for microrobotic tasks,” Sensors and Actuators A: Physical, vol. 271, pp. 373-382, https://doi.org/10.1016/j.sna.2017.12.065.
 
 
[22] L. Zhou and H. Xie, “A Novel Out-of-Plane Electrothermal Bistable Microactuator,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 2019, pp. 1953-1956. https://doi.org/10.1109/TRANSDUCERS.2019.8808360.
 
[23] K. Tadakuma, L. M. DeVita, J.-S. Plante, Y. Shaoze, and S. Dubowsky, “The experimental study of a precision parallel manipulator with binary actuation: With application to MRI cancer treatment,” in 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, pp. 2503-2508. https://doi.org/10.1109/ROBOT.2008.4543589.
 
[24] G. Miron, A. Girard, J.-S. Plante, and M. Lepage, “Design and manufacturing of embedded pneumatic actuators for an MRI-Compatible Prostate Cancer Binary Manipulator,” in ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA, 2012, pp. 1133-1142. https://doi.org/10.1115/DETC2012-71380.
 
[25] T. Chen and K. Shea, “An autonomous programmable actuator and shape reconfigurable structures using bistability and shape memory polymers,” 3D Print. Addit. Manuf., vol. 5, no. 2, pp. 91-101, Jun. 2018. https://doi.org/10.1089/3dp.2017.0118.
 
[26] W. Ding and Y.-A. Yao, “Construction and locomotion analysis of modular robots with pneumatic-actuated and binary-controlled expandable cubes,” Adv. Robot., vol. 28, no. 22, pp. 1487-1505, Dec. 2014. https://doi.org/10.1080/01691864.2014.959052.
 
[27] D. Schütz, A. Raatz, and J. Hesselbach, “Adapted task configuration of a reconfigurable binary parallel robot with PRRRP structure,” Robotica, vol. 31, no. 2, pp. 285-293, Mar. 2013. https://doi.org/10.1017/S0263574712000240.
 
[28] M. Russo, J. Barrientos-Diez, and D. Axinte, “A kinematic coupling mechanism with binary electromagnetic actuators for high-precision positioning,” IEEE/ASME Trans. Mechatron., vol. 27, no. 2, pp. 892-903, Apr. 2021. https://doi.org/10.1109/TMECH.2021.3074286.
 
[29] H. Shao, S. Wei, X. Jiang, D. P. Holmes, and T. K. Ghosh, “Bioinspired electrically activated soft bistable actuators,” Adv. Funct. Mater., vol. 28, no. 35, p. 1802999, Aug. 2018. https://doi.org/10.1002/adfm.201802999.
 
[30] I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O’Brien, and E. P. Calius, “Multi-functional dielectric elastomer artificial muscles for soft and smart machines,” J. Appl. Phys., vol. 112, no. 4, p. 041101, Aug. 2012. https://doi.org/10.1063/1.4740023.
 
[31] P. Chouinard and J.-S. Plante, “Bistable antagonistic dielectric elastomer actuators for binary robotics and mechatronics,” IEEE/ASME Trans. Mechatron., vol. 17, no. 5, pp. 857-865, Oct. 2011. https://doi.org/10.1109/TMECH.2011.2135862.
 
[32] H. Yuk, D. Kim, H. Lee, S. Jo, and J. H. Shin, “Shape memory alloy-based small crawling robots inspired by C. elegans,” Bioinspir. Biomim., vol. 6, no. 4, p. 046002, Dec. 2011. https://doi.org/10.1088/1748-3182/6/4/046002.
 
[33] Y. Gandhi, A. Pirondi, and L. Collini, “Analysis of bistable composite laminate with embedded SMA actuators,” Procedia Struct. Integr., vol. 12, pp. 429-437, 2018. https://doi.org/10.1016/j.prostr.2018.11.075.
 
[34] K.-J. Cho, B. Selden, and H. H. Asada, “Segmented binary control of multi-axis SMA array actuators,” in Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, San Diego, California, USA, 2005, p. 314. https://doi.org/10.1117/12.600307.
 
[35] K.-J. Cho and H. H. Asada, “Architecture design of a multiaxis cellular actuator array using segmented binary control of shape memory alloy,” IEEE Trans. Robot., vol. 22, no. 4, pp. 831-843, Aug. 2006. https://doi.org/10.1109/TRO.2006.878981.
 
[36] E. Ottaviano, G. Carbone, and M. Ceccarelli, “Workspace analysis and performance of a binary actuated parallel manipulator with flexural joints,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 217, no. 3, pp. 313–330, Mar. 2003. https://doi.org/10.1243/095440603762869984.
 
[37] G. Borchert, C. Löchte, S. Brumme, G. Carbone, M. Ceccarelli, and A. Raatz, “Design methodology for a compliant binary actuated parallel mechanism with flexure hinges,” in New Trends in Mechanism and Machine Science: Theory and Applications in Engineering, V. Parenti-Castelli and C. Fanghella, Eds. Dordrecht, Netherlands: Springer, 2013, pp. 171–179. https://doi.org/10.1007/978-94-007-4902-3_18.
 
[38] G. Carbone, E. D’Aliesio, G. Borchert, and A. Raatz, “Design and validation of the binary actuated parallel manipulator BAPAMAN2,” Adv. Robot., vol. 27, no. 13, pp. 1033–1043, Sep. 2013. https://doi.org/10.1080/01691864.2013.804800.
 
[39] G. Carbone, “Experimental characterization of a binary actuated parallel manipulator,” Chin. J. Mech. Eng., vol. 29, no. 3, pp. 445–453, May 2016. https://doi.org/10.3901/CJME.2016.0323.036.
 
[40] R. Addo-Akoto and J.-H. Han, “Bidirectional actuation of buckled bistable beam using twisted string actuator,” J. Intell. Mater. Syst. Struct., vol. 30, no. 4, pp. 506–516, Feb. 2019. https://doi.org/10.1177/1045389X18817830.
 
[41] M. Gerbl and J. Gerstmayr, “Self-reconfiguration of shape-shifting modular robots with triangular structure,” Robot. Auton. Syst., vol. 147, p. 103930, Nov. 2022. https://doi.org/10.1016/j.robot.2021.103930.
 
[42] M. Gerbl and J. Gerstmayr, “Self-reconfiguration planning of adaptive modular robots with triangular structure based on extended binary trees,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, Oct. 2020, pp. 3312–3319. https://doi.org/10.1109/IROS45743.2020.9341300.
 
[43] D. K. Patel et al., “Highly Dynamic Bistable Soft Actuator for Reconfigurable Multimodal Soft Robots,” Adv. Mater. Technol., vol. 8, no. 2, p. 2201259, Feb. 2023. https://doi.org/10.1002/admt.202201259.
 
[44] Z. Zhang et al., “Magnetic actuation bionic robotic gripper with bistable morphing structure,” Compos. Struct., vol. 229, p. 111422, Dec. 2019. https://doi.org/10.1016/j.compstruct.2019.111422.
 
[45] Y. Chi et al., “Bistable and multistable actuators for soft robots: Structures, materials, and functionalities,” Adv. Mater., vol. 34, no. 19, p. 2110384, May 2022. https://doi.org/10.1002/adma.202110384.
 
[46] W. Ma et al., “An origami-inspired cube pipe structure with bistable anti-symmetric CFRP shells driven by magnetic field,” Smart Mater. Struct., vol. 28, no. 2, p. 025028, Feb. 2019. https://doi.org/10.1088/1361-665X/aaf6ba.
 
[47] L. S. Novelino et al., “Untethered control of functional origami microrobots with distributed actuation,” Proc. Natl. Acad. Sci. U.S.A., vol. 117, no. 39, pp. 24096–24101, Sep. 2020. https://doi.org/10.1073/pnas.2013292117.
 
[48] Q. Ze et al., “Soft robotic origami crawler,” Sci. Adv., vol. 8, no. 13, p. eabm7834, Mar. 2022. https://doi.org/10.1126/sciadv.abm7834.
 
[49] K. Hu, T. Jeannin, J. Berre, M. Ouisse, and K. Rabenorosoa, “Toward actuation of Kresling pattern-based origami robots,” Smart Mater. Struct., vol. 31, no. 10, p. 105025, Oct. 2022. https://doi.org/10.1088/1361-665X/ac9020.
 
[50] S. Wu et al., “Stretchable origami robotic arm with omnidirectional bending and twisting,” Proc. Natl. Acad. Sci. U.S.A., vol. 118, no. 36, p. e2110023118, Sep. 2021. https://doi.org/10.1073/pnas.2110023118.
 
[51] H. Son, Y. Park, Y. Na, and C. Yoon, “4D Multiscale Origami Soft Robots: A Review,” Polymers, vol. 14, no. 19, p. 4235, Sep. 2022. https://doi.org/10.3390/polym14194235.
 
[52] I. R. Ebert-Uphoff, “On the development of discretely-actuated hybrid-serial-parallel manipulators,” Baltimore, MD, USA: The Johns Hopkins University, 1998. https://www-proquest-com.access.semantak.com/dissertations-theses/on-development-discretely-actuated-hybrid-serial/docview/304420212/se-2?accountid=173708.
 
[53] I. Ebert‐uphoff and G. S. Chirikjian, “Efficient workspace generation for binary manipulators with many actuators,” J. Robot. Syst., vol. 12, no. 6, pp. 383–400, Jun. 1995. https://doi.org/10.1002/rob.4620120605.
 
[54] I. Ebert-Uphoff and G. S. Chirikjian, “Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities,” in Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, Apr. 1996, vol. 1, pp. 139–145. https://doi.org/10.1109/ROBOT.1996.503586.
 
[55] I. Ebert-Uphoff and G. S. Chirikjian, “Discretely actuated manipulator workspace generation by closed-form convolution,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Irvine, CA, USA, Aug. 1996, vol. 97577, p. V02AT02A014. https://doi.org/10.1115/96-DETC/MECH-1162.
 
[56] G. S. Chirikjian and I. Ebert-Uphoff, “Numerical convolution on the Euclidean group with applications to workspace generation,” IEEE Trans. Robot. Autom., vol. 14, no. 1, pp. 123–136, Feb. 1998. https://doi.org/10.1109/70.660856.
 
[57] J. Suthakorn, “Paradigms for service robotics,” Baltimore, MD, USA: The Johns Hopkins University, 2003. https://www-proquest-com.access.semantak.com/dissertations-theses/paradigms-service-robotics/docview/288276541/se-2?accountid=173708.
 
[58] J. Suthakorn and G. S. Chirikjian, “Design and implementation of a new discretely-actuated manipulator,” in Experimental Robotics VII, D. Rus and S. Singh, Eds. Berlin, Germany: Springer, 2002, pp. 151–157. https://doi.org/10.1007/3-540-45118-8_16.
 
[59] J. Suthakorn and G. S. Chirikjian, “A new inverse kinematics algorithm for binary manipulators with many actuators,” Adv. Robot., vol. 15, no. 2, pp. 225–244, 2001. https://doi.org/10.1163/15685530152116245.
 
[60] J. Plante et al., “Binary actuation,” in Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors, K. J. Kim and S. Tadokoro, Eds. London, U.K.: Springer, 2008, ch. 26, pp. 270–278. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=53ad7c3afb1092c833daaae26d21a48c3a21d346.
[61] V. A. Sujan, M. D. Lichter, and S. Dubowsky, “Lightweight hyper-redundant binary elements for planetary exploration robots,” in 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings, Como, Italy, Jul. 2001, vol. 2, pp. 1273–1278. https://doi.org/10.1109/AIM.2001.936904.
 
[62] V. A. Sujan and S. Dubowsky, “Design of a lightweight hyper-redundant deployable binary manipulator,” J. Mech. Des., vol. 126, no. 1, pp. 29–39, Jan. 2004. https://doi.org/10.1115/1.1637647.
 
[63] M. Hafez, M. D. Lichter, and S. Dubowsky, “Optimized binary modular reconfigurable robotic devices,” IEEE/ASME Trans. Mechatron., vol. 8, no. 1, pp. 18–25, Mar. 2003. https://doi.org/10.1109/TMECH.2003.809156.
 
[64] A. Wingert, M. D. Lichter, S. Dubowsky, and M. Hafez, “Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers,” in Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), Y. Bar-Cohen, Ed., San Diego, CA, USA, Mar. 2002, vol. 4695, pp. 415–423. https://doi.org/10.1117/12.475189.
 
[65] J. Vogan et al., “Manipulation in MRI devices using electrostrictive polymer actuators: With an application to reconfigurable imaging coils,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, New Orleans, LA, USA, Apr. 2004, vol. 3, pp. 2498–2504. https://doi.org/10.1109/ROBOT.2004.1307436.
 
[66] A. Wingert, M. D. Lichter, and S. Dubowsky, “On the design of large degree-of-freedom digital mechatronic devices based on bistable dielectric elastomer actuators,” IEEE/ASME Trans. Mechatron., vol. 11, no. 4, pp. 448–456, Aug. 2006. https://doi.org/10.1109/TMECH.2006.878542.
 
[67] J.-S. Plante, M. Santer, S. Dubowsky, and S. Pellegrino, “Compliant bistable dielectric elastomer actuators for binary mechatronic systems,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 47446, pp. 121-126, 2005. https://doi.org/10.1115/DETC2005-85576.
 
[68] J.-S. Plante, “Dielectric elastomer actuators for binary robotics and mechatronics,” Ph.D. dissertation, Massachusetts Institute of Technology, 2006. https://dspace.mit.edu/handle/1721.1/35305.
 
[69] E. Lanteigne and A. Jnifene, “Design of a link-less hyper-redundant manipulator and composite shape memory alloy actuator,” in 2006 Canadian Conference on Electrical and Computer Engineering, pp. 1180-1183, 2006. https://doi.org/10.1109/CCECE.2006.277347.
 
[70] E. Lanteigne and A. Jnifene, “An experimental study on a SMA driven pressurized hyper-redundant manipulator,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 9, pp. 1067-1076, 2008. https://doi.org/10.1177/1045389X07083185.
 
[71] A. Mavrommati, E. Tzorakoleftherakis, and A. Tzes, “Design and development of a hyper-redundant binary active laparoscopic manipulator,” in 2012 20th Mediterranean Conference on Control & Automation (MED), pp. 327-332, 2012. https://doi.org/10.1109/MED.2012.6265659.
 
[72] E. Tzorakoleftherakis, A. Mavrommati, and A. Tzes, “Design and implementation of a binary redundant manipulator with cascaded modules,” Journal of Mechanisms and Robotics, vol. 8, no. 1, 2016. https://doi.org/10.1115/1.4030372.
 
[73] S. Tappe, J. Kotlarski, T. Ortmaier, M. Dörbaum, A. Mertens, and B. Ponick, “The kinematic synthesis of a spatial, hyper-redundant system based on binary electromagnetic actuators,” in 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 211-216, 2015. https://doi.org/10.1109/ICARA.2015.7081149.
 
[74] S. Tappe, J. Pohlmann, J. Kotlarski, and T. Ortmaier, “Towards a follow-the-leader control for a binary actuated hyper-redundant manipulator,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3195-3201, 2015. https://doi.org/10.1109/IROS.2015.7353820.
 
[75] S. Tappe, M. Dörbaum, J. Kotlarski, B. Ponick, and T. Ortmaier, “Kinematics and dynamics identification of a hyper-redundant, electromagnetically actuated manipulator,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 601-607, 2016. https://doi.org/10.1109/AIM.2016.7576834.
 
[76] S. Tappe, J. Pohlmann, J. Kotlarski, and T. Ortmaier, “Optimization strategies for task specific path-following capabilities of a binary actuated snake-like robot using follow-the-leader control,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 298-303, 2017. https://doi.org/10.1109/AIM.2017.8014243.
 
[77] S. Tappe, P. Boyraz, H. Korz, and T. Ortmaier, “Design, production and integration of a shape sensing robotic sleeve for a hyper-redundant, binary actuated robot,” In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 298-303, 2018. https://doi.org/10.1109/AIM.2018.8452710.
 
[78] M. Dörbaum, S. Tappe, T. Ortmaier, and B. Ponick, “Design and analysis of electromagnetic tilting actuators,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2171-2181, 2019. https://doi.org/10.1109/TMECH.2019.2929735.
 
[79] A. Motahari, H. Zohoor, and M. Habibnejad Korayem, “Design and construction of a discretely actuated hyper-redundant manipulator,” Modares Mechanical Engineering, vol. 20, no. 3, pp. 669-676, 2020. https://mme.modares.ac.ir/article-15-30410-en.html.