بهبود فرآیند جوشش استخری با استفاده از اثر سطوح متخلخل

نوع مقاله : علمی ترویجی

نویسندگان

دانشگاه علم و صنعت ایران

چکیده

فرآیند جوشش به‌عنوان روشی کارآمد و مؤثر در انتقال گرما بین یک سطح با دمای بالاتر به سیال با دمای کمتر در تماس با سطح به کار گرفته می شود. این فرآیند به دلیل دارا بودن ضریب انتقال حرارت بالا نسبت به سایر مکانیزم‌های انتقال حرارت، از اقبال بسیار خوبی در صنعت برخوردار است. روش های ترکیبی به کار برده شده در سال های اخیر و توسعه سریع فناوری های مهندسی، کمک قابل توجهی به بهبود انتقال حرارت جوششی کرده است. در میان انواع جوشش، جوشش استخری به دلیل قابلیت برداشتن شارهای حرارتی بالا در دمای اضافی پایین و عدم استفاده از نیروی خارجی از جایگاه ویژه ای برخوردار است. از جمله عوامل مؤثر در فرآیند جوشش استخری می توان به خواص سطح نظیر ترشوندگی، موئینگی وایجاد تخلخل روی سطوح اشاره کرد. در این مقاله به تشریح جوشش استخری و تحلیل منحنی جوشش پرداخته و پارامترهای موثر براین فرآیند را مورد تجزیه و تحلیل قرار می دهد، و در نهایت با بهبود مورفولوژی سطح از نقطه نظر عملکرد گرمایی، با تمرکز بر اثر ایجاد تخلخل روی سطح در جوشش استخری به انتها می رسد.

کلیدواژه‌ها


[1] El-Genk, Mohamed S. Nucleate boiling enhancements on porousgraphiteandmicroporousandmacro–finnedcopper surfaces. Heat Transfer Engineering, 33(3):175–204, 2012.
[2] Nukiyama, Shiro. The maximum and minimum values of the heat q transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer, 9(12):1419–1433, 1966.
[3] Jones, Benjamin J, McHale, John P, and Garimella, Suresh V. The influence of surface roughness on nucleate pool boiling heat transfer. Journal of Heat Transfer, 131(12):121009, 2009.
 [4] Kim, Beom Seok, Shin, Sangwoo, Lee, Donghwi, Choi, Geehong, Lee, Hwanseong, Kim, Kyung Min, and Cho, Hyung Hee. Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer. International Journal of Heat and Mass Transfer, 70:23–32, 2014.
[5] Phan, Hai Trieu. Effects of nano-and micro-surface treatments on boiling heat transfer. Ph.D. thesis, Institut National Polytechnique de Grenoble-INPG, 2010.
[6] O’Hanley, Harry, Coyle, Carolyn, Buongiorno, Jacopo, McKrell, Tom, Hu, Lin-Wen, Rubner, Michael, and Cohen, Robert. Separate effects of surface roughness, wettability,andporosityontheboilingcriticalheatflux. Applied Physics Letters, 103(2):024102, 2013.
 [7] Kandlikar, Satish G. Handbook of phase change: boiling and condensation. Routledge, 2018.
[8] Collier, John G and Thome, John R. Convective boiling and condensation. Clarendon Press, 1994.
[9] Kim, Jungho. Nucleate pool boiling: the dominant bubble heat transfer mechanisms. in ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels, pp. 1267–1278. American Society of Mechanical Engineers, 2009.
[10] Mikic, BBandRohsenow, WM. Anewcorrelationofpoolboiling data including the effect of heating surface characteristics. Journal of Heat Transfer, 91(2):245–250, 1969.
 [11] Ji,Xianbing,Xu,Jinliang,Zhao,Ziwei,andYang,Wolong. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces. Experimental Thermal and Fluid Science, 48:198–212, 2013. [12] Patil, Chinmay. Enhancement of pool boiling heat transfer using a combination of open microchannels and microporous surfaces. 2014.
 [13] Min, DH, Hwang, GS, Usta, Y, Cora, ON, Koc, M, and Kaviany, M. 2-d and 3-d modulated porous coatings for enhanced pool boiling. International Journal of Heat and Mass Transfer, 52(11-12):2607–2613, 2009.
[14] Bergles, AE and Chyu, MC. Characteristics of nucleate poolboilingfromporousmetalliccoatings. JournalofHeat Transfer, 104(2):279–285, 1982.
[15] Reilly, Sean W and Catton, Ivan. Utilization of pore-size distributionstopredictthermophysicalpropertiesandperformance of biporous wick evaporators. Journal of Heat Transfer, 136(6):061501, 2014.
 [16] Chang, JY and You, SM. Enhanced boiling heat transfer from microporous surfaces: effects of a coating composition and method. International Journal of Heat and Mass Transfer, 40(18):4449–4460, 1997.
 [17] Celia, Elena, Darmanin, Thierry, de Givenchy, Elisabeth Taffin, Amigoni, Sonia, and Guittard, Frédéric. Recent advances in designing superhydrophobic surfaces. Journal of colloid and interface science, 402:1–18, 2013.
 [18] Xiao, Zhu. Heat transfer, fluid transport and mechanical properties of porous copper manufactured by lost carbonate sintering. Ph.D. thesis, University of Liverpool, 2013.
 [19] Patil, Chinmay M and Kandlikar, Satish G. Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels. International Journal of Heat and Mass Transfer, 79:816–828, 2014